A robust estimation method for the linear regression model parameters with correlated error terms and outliers

© 2021 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 49(2022), 7 vom: 17., Seite 1663-1676
1. Verfasser: Piradl, Sajjad (VerfasserIn)
Weitere Verfasser: Shadrokh, Ali, Yarmohammadi, Masoud
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article Robust estimation method correlated error terms minimum Matusita distance estimation method non-parametric kernel density estimation method outliers
LEADER 01000caa a22002652c 4500
001 NLM342289535
003 DE-627
005 20250303113557.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2021.1881454  |2 doi 
028 5 2 |a pubmed25n1140.xml 
035 |a (DE-627)NLM342289535 
035 |a (NLM)35707565 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Piradl, Sajjad  |e verfasserin  |4 aut 
245 1 2 |a A robust estimation method for the linear regression model parameters with correlated error terms and outliers 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.06.2022 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2021 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a Independence of error terms in a linear regression model, often not established. So a linear regression model with correlated error terms appears in many applications. According to the earlier studies, this kind of error terms, basically can affect the robustness of the linear regression model analysis. It is also shown that the robustness of the parameters estimators of a linear regression model can stay using the M-estimator. But considering that, it acquires this feature as the result of establishment of its efficiency. Whereas, it has been shown that the minimum Matusita distance estimators, has both features robustness and efficiency at the same time. On the other hand, because the Cochrane and Orcutt adjusted least squares estimators are not affected by the dependence of the error terms, so they are efficient estimators. Here we are using of a non-parametric kernel density estimation method, to give a new method of obtaining the minimum Matusita distance estimators for the linear regression model with correlated error terms in the presence of outliers. Also, simulation and real data study both are done for the introduced estimation method. In each case, the proposed method represents lower biases and mean squared errors than the other two methods 
650 4 |a Journal Article 
650 4 |a Robust estimation method 
650 4 |a correlated error terms 
650 4 |a minimum Matusita distance estimation method 
650 4 |a non-parametric kernel density estimation method 
650 4 |a outliers 
700 1 |a Shadrokh, Ali  |e verfasserin  |4 aut 
700 1 |a Yarmohammadi, Masoud  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 49(2022), 7 vom: 17., Seite 1663-1676  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnas 
773 1 8 |g volume:49  |g year:2022  |g number:7  |g day:17  |g pages:1663-1676 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2021.1881454  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 49  |j 2022  |e 7  |b 17  |h 1663-1676