Multivariate nonparametric methods in two-way balanced designs : performances and limitations in small samples

© 2021 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 49(2022), 7 vom: 17., Seite 1714-1741
1. Verfasser: Ronchi, Fabrizio (VerfasserIn)
Weitere Verfasser: Harrar, Solomon W, Salmaso, Luigi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article Factorial design MANOVA multivariate analysis nonparametric combination permutation power
LEADER 01000caa a22002652c 4500
001 NLM342289446
003 DE-627
005 20250303113556.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2021.1915256  |2 doi 
028 5 2 |a pubmed25n1140.xml 
035 |a (DE-627)NLM342289446 
035 |a (NLM)35707555 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ronchi, Fabrizio  |e verfasserin  |4 aut 
245 1 0 |a Multivariate nonparametric methods in two-way balanced designs  |b performances and limitations in small samples 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.06.2022 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2021 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a Investigations of multivariate population are pretty common in applied researches, and the two-way crossed factorial design is a common design used at the exploratory phase in industrial applications. When assumptions such as multivariate normality and covariance homogeneity are violated, the conventional wisdom is to resort to nonparametric tests for hypotheses testing. In this paper we compare the performances, and in particular the power, of some nonparametric and semi-parametric methods that have been developed in recent years. Specifically, we examined resampling methods and robust versions of classical multivariate analysis of variance (MANOVA) tests. In a simulation study, we generate data sets with different configurations of factor's effect, number of replicates, number of response variables under null hypothesis, and number of response variables under alternative hypothesis. The objective is to elicit practical advice and guides to practitioners regarding the sensitivity of the tests in the various configurations, the tradeoff between power and type I error, the strategic impact of increasing number of response variables, and the favourable performance of one test when the alternative is sparse. A real case study from an industrial engineering experiment in thermoformed packaging production is used to compare and illustrate the application of the various methods 
650 4 |a Journal Article 
650 4 |a Factorial design 
650 4 |a MANOVA 
650 4 |a multivariate analysis 
650 4 |a nonparametric combination 
650 4 |a permutation 
650 4 |a power 
700 1 |a Harrar, Solomon W  |e verfasserin  |4 aut 
700 1 |a Salmaso, Luigi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 49(2022), 7 vom: 17., Seite 1714-1741  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnas 
773 1 8 |g volume:49  |g year:2022  |g number:7  |g day:17  |g pages:1714-1741 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2021.1915256  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 49  |j 2022  |e 7  |b 17  |h 1714-1741