Structured sparse support vector machine with ordered features

© 2020 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 49(2022), 5 vom: 09., Seite 1105-1120
1. Verfasser: Fang, Kuangnan (VerfasserIn)
Weitere Verfasser: Wang, Peng, Zhang, Xiaochen, Zhang, Qingzhao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article Structured sparse local oracle property support vector machine variable selection
LEADER 01000caa a22002652c 4500
001 NLM342288962
003 DE-627
005 20250303113553.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2020.1849053  |2 doi 
028 5 2 |a pubmed25n1140.xml 
035 |a (DE-627)NLM342288962 
035 |a (NLM)35707509 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Fang, Kuangnan  |e verfasserin  |4 aut 
245 1 0 |a Structured sparse support vector machine with ordered features 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.07.2022 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a In the application of high-dimensional data classification, several attempts have been made to achieve variable selection by replacing the ℓ 2 -penalty with other penalties for the support vector machine (SVM). However, these high-dimensional SVM methods usually do not take into account the special structure among covariates (features). In this article, we consider a classification problem, where the covariates are ordered in some meaningful way, and the number of covariates p can be much larger than the sample size n. We propose a structured sparse SVM to tackle this type of problems, which combines the non-convex penalty and cubic spline estimation procedure (i.e. penalizing second-order derivatives of the coefficients) to the SVM. From a theoretical point of view, the proposed method satisfies the local oracle property. Simulations show that the method works effectively both in feature selection and classification accuracy. A real application is conducted to illustrate the benefits of the method 
650 4 |a Journal Article 
650 4 |a Structured sparse 
650 4 |a local oracle property 
650 4 |a support vector machine 
650 4 |a variable selection 
700 1 |a Wang, Peng  |e verfasserin  |4 aut 
700 1 |a Zhang, Xiaochen  |e verfasserin  |4 aut 
700 1 |a Zhang, Qingzhao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 49(2022), 5 vom: 09., Seite 1105-1120  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnas 
773 1 8 |g volume:49  |g year:2022  |g number:5  |g day:09  |g pages:1105-1120 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2020.1849053  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 49  |j 2022  |e 5  |b 09  |h 1105-1120