Mixed-effects modelling for crossed and nested data : an analysis of dengue fever in the state of Goiás, Brazil

© 2020 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 47(2020), 13-15 vom: 09., Seite 2912-2926
1. Verfasser: Oliveira, A N (VerfasserIn)
Weitere Verfasser: Menezes, R, Faria, S, Afonso, P
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article Mixed-effects model climate dengue nested random-effects space and time random-effects
LEADER 01000caa a22002652c 4500
001 NLM342288091
003 DE-627
005 20250303113548.0
007 cr uuu---uuuuu
008 231226s2020 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2020.1736528  |2 doi 
028 5 2 |a pubmed25n1140.xml 
035 |a (DE-627)NLM342288091 
035 |a (NLM)35707421 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Oliveira, A N  |e verfasserin  |4 aut 
245 1 0 |a Mixed-effects modelling for crossed and nested data  |b an analysis of dengue fever in the state of Goiás, Brazil 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.07.2022 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a Dengue fever is a viral disease transmitted by the mosquito Aedes aegypti. In order to avoid epidemics and deaths, this transmitting vector must be controlled. This work assembles, for the first time, data from multiple governmental bodies describing the number of dengue cases reported, and meteorological conditions in 20 cities in the Goiás state, Brazil, from 2008 to 2015. We then apply generalised linear mixed modelling to this novel data set to model dengue occurrences in this state, where the tropical climate favours the proliferation of the main transmitting vector of this disease. The number of reported dengue cases is estimated using meteorological variables as fixed effects, and city and year data are included in the model as random effects. The proposed models can cope with complex data structures, such as nested data, while taking into account the particularities of each year dependent on the city under analysis. The results confirm that precipitation, minimum temperature, and relative air humidity contribute to the increase of dengue cases number, while year and city location are determining factors. Public policies, based on these new results, together with joint actions involving local populations, are essential to combat the vector transmitting dengue and avoid epidemics 
650 4 |a Journal Article 
650 4 |a Mixed-effects model 
650 4 |a climate 
650 4 |a dengue 
650 4 |a nested random-effects 
650 4 |a space and time random-effects 
700 1 |a Menezes, R  |e verfasserin  |4 aut 
700 1 |a Faria, S  |e verfasserin  |4 aut 
700 1 |a Afonso, P  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 47(2020), 13-15 vom: 09., Seite 2912-2926  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnas 
773 1 8 |g volume:47  |g year:2020  |g number:13-15  |g day:09  |g pages:2912-2926 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2020.1736528  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 47  |j 2020  |e 13-15  |b 09  |h 2912-2926