Best-subset model selection based on multitudinal assessments of likelihood improvements

© 2019 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 47(2020), 13-15 vom: 01., Seite 2384-2420
1. Verfasser: Carter, Knute D (VerfasserIn)
Weitere Verfasser: Cavanaugh, Joseph E
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article 62F07 Akaike information criterion Bayesian information criterion likelihood ratio linear models regression variable selection
LEADER 01000caa a22002652 4500
001 NLM342287966
003 DE-627
005 20240826232321.0
007 cr uuu---uuuuu
008 231226s2020 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2019.1645097  |2 doi 
028 5 2 |a pubmed24n1513.xml 
035 |a (DE-627)NLM342287966 
035 |a (NLM)35707408 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Carter, Knute D  |e verfasserin  |4 aut 
245 1 0 |a Best-subset model selection based on multitudinal assessments of likelihood improvements 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 26.08.2024 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2019 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a A common model selection approach is to select the best model, according to some criterion, from among the collection of models defined by all possible subsets of the explanatory variables. Identifying an optimal subset has proven to be a challenging problem, both statistically and computationally. Our model selection procedure allows the researcher to nominate, a priori, the probability at which models containing false or spurious variables will be selected from among all possible subsets. The procedure determines whether inclusion of each candidate variable results in a sufficiently improved fitting term - and is hence named the SIFT procedure. Two variants are proposed: a naive method based on a set of restrictive assumptions and an empirical permutation-based method. Properties of these methods are investigated within the standard linear modeling framework and performance is evaluated against other model selection techniques. The SIFT procedure behaves as designed - asymptotically selecting variables that characterize the underlying data generating mechanism, while limiting selection of spurious variables to the desired level. The SIFT methodology offers researchers a promising new approach to model selection, providing the ability to control the probability of selecting a model that includes spurious variables to a level based on the context of the application 
650 4 |a Journal Article 
650 4 |a 62F07 
650 4 |a Akaike information criterion 
650 4 |a Bayesian information criterion 
650 4 |a likelihood ratio 
650 4 |a linear models 
650 4 |a regression 
650 4 |a variable selection 
700 1 |a Cavanaugh, Joseph E  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 47(2020), 13-15 vom: 01., Seite 2384-2420  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnns 
773 1 8 |g volume:47  |g year:2020  |g number:13-15  |g day:01  |g pages:2384-2420 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2019.1645097  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 47  |j 2020  |e 13-15  |b 01  |h 2384-2420