An automatic robust Bayesian approach to principal component regression

© 2020 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 48(2021), 1 vom: 09., Seite 84-104
1. Verfasser: Gagnon, Philippe (VerfasserIn)
Weitere Verfasser: Bédard, Mylène, Desgagné, Alain
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article 62F35 62J05 Dimension reduction linear regression outliers principal component analysis reversible jump algorithms whole robustness
LEADER 01000caa a22002652c 4500
001 NLM342286226
003 DE-627
005 20250303113535.0
007 cr uuu---uuuuu
008 231226s2021 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2019.1710478  |2 doi 
028 5 2 |a pubmed25n1140.xml 
035 |a (DE-627)NLM342286226 
035 |a (NLM)35707235 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gagnon, Philippe  |e verfasserin  |4 aut 
245 1 3 |a An automatic robust Bayesian approach to principal component regression 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.06.2022 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a Principal component regression uses principal components (PCs) as regressors. It is particularly useful in prediction settings with high-dimensional covariates. The existing literature treating of Bayesian approaches is relatively sparse. We introduce a Bayesian approach that is robust to outliers in both the dependent variable and the covariates. Outliers can be thought of as observations that are not in line with the general trend. The proposed approach automatically penalises these observations so that their impact on the posterior gradually vanishes as they move further and further away from the general trend, corresponding to a concept in Bayesian statistics called whole robustness. The predictions produced are thus consistent with the bulk of the data. The approach also exploits the geometry of PCs to efficiently identify those that are significant. Individual predictions obtained from the resulting models are consolidated according to model-averaging mechanisms to account for model uncertainty. The approach is evaluated on real data and compared to its nonrobust Bayesian counterpart, the traditional frequentist approach and a commonly employed robust frequentist method. Detailed guidelines to automate the entire statistical procedure are provided. All required code is made available, see ArXiv:1711.06341 
650 4 |a Journal Article 
650 4 |a 62F35 
650 4 |a 62J05 
650 4 |a Dimension reduction 
650 4 |a linear regression 
650 4 |a outliers 
650 4 |a principal component analysis 
650 4 |a reversible jump algorithms 
650 4 |a whole robustness 
700 1 |a Bédard, Mylène  |e verfasserin  |4 aut 
700 1 |a Desgagné, Alain  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 48(2021), 1 vom: 09., Seite 84-104  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnas 
773 1 8 |g volume:48  |g year:2021  |g number:1  |g day:09  |g pages:84-104 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2019.1710478  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 48  |j 2021  |e 1  |b 09  |h 84-104