Clustering of longitudinal interval-valued data via mixture distribution under covariance separability

© 2019 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 47(2020), 10 vom: 14., Seite 1739-1756
1. Verfasser: Park, Seongoh (VerfasserIn)
Weitere Verfasser: Lim, Johan, Choi, Hyejeong, Kwak, Minjung
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article 62-07 62H30 Clustering M-clustering interval-valued data longitudinal data matrix variate data separable covariance matrix
LEADER 01000caa a22002652c 4500
001 NLM342285246
003 DE-627
005 20250303113529.0
007 cr uuu---uuuuu
008 231226s2020 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2019.1692795  |2 doi 
028 5 2 |a pubmed25n1140.xml 
035 |a (DE-627)NLM342285246 
035 |a (NLM)35707136 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Park, Seongoh  |e verfasserin  |4 aut 
245 1 0 |a Clustering of longitudinal interval-valued data via mixture distribution under covariance separability 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.07.2022 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2019 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a We consider the clustering of repeatedly measured 'min-max' type interval-valued data. We read the data as matrix variate data and assume the covariance matrix is separable for the model-based clustering (M-clustering). The use of a separable covariance matrix introduces several advantages in M-clustering, which include fewer samples required for a valid procedure. In addition, the numerical study shows that this structured matrix allows us to find the correct number of clusters more accurately compared to other commonly assumed covariance matrices. We apply the M-clustering with various covariance structures to clustering the longitudinal blood pressure data from the National Heart, Lung, and Blood Institute Growth and Health Study (NGHS) 
650 4 |a Journal Article 
650 4 |a 62-07 
650 4 |a 62H30 
650 4 |a Clustering 
650 4 |a M-clustering 
650 4 |a interval-valued data 
650 4 |a longitudinal data 
650 4 |a matrix variate data 
650 4 |a separable covariance matrix 
700 1 |a Lim, Johan  |e verfasserin  |4 aut 
700 1 |a Choi, Hyejeong  |e verfasserin  |4 aut 
700 1 |a Kwak, Minjung  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 47(2020), 10 vom: 14., Seite 1739-1756  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnas 
773 1 8 |g volume:47  |g year:2020  |g number:10  |g day:14  |g pages:1739-1756 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2019.1692795  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 47  |j 2020  |e 10  |b 14  |h 1739-1756