Location-scale mixed models and goodness-of-fit assessment applied to insect ecology
© 2019 Informa UK Limited, trading as Taylor & Francis Group.
Veröffentlicht in: | Journal of applied statistics. - 1991. - 47(2020), 10 vom: 14., Seite 1776-1793 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2020
|
Zugriff auf das übergeordnete Werk: | Journal of applied statistics |
Schlagworte: | Journal Article Biological control exponentiated models half-normal plots with simulation envelopes location-scale modelling mixed survival models |
Zusammenfassung: | © 2019 Informa UK Limited, trading as Taylor & Francis Group. Survival models have been extensively used to analyse time-until-event data. There is a range of extended models that incorporate different aspects, such as overdispersion/frailty, mixtures, and flexible response functions through semi-parametric models. In this work, we show how a useful tool to assess goodness-of-fit, the half-normal plot of residuals with a simulated envelope, implemented in the hnp package in R, can be used on a location-scale modelling context. We fitted a range of survival models to time-until-event data, where the event was an insect predator attacking a larva in a biological control experiment. We started with the Weibull model and then fitted the exponentiated-Weibull location-scale model with regressors both for the location and scale parameters. We performed variable selection for each model and, by producing half-normal plots with simulated envelopes for the deviance residuals of the model fits, we found that the exponentiated-Weibull fitted the data better. We then included a random effect in the exponentiated-Weibull model to accommodate correlated observations. Finally, we discuss possible implications of the results found in the case study |
---|---|
Beschreibung: | Date Revised 16.07.2022 published: Electronic-eCollection Citation Status PubMed-not-MEDLINE |
ISSN: | 0266-4763 |
DOI: | 10.1080/02664763.2019.1693522 |