Location-scale mixed models and goodness-of-fit assessment applied to insect ecology

© 2019 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 47(2020), 10 vom: 14., Seite 1776-1793
1. Verfasser: Moral, R A (VerfasserIn)
Weitere Verfasser: Hinde, J, Ortega, E M M, Demétrio, C G B, Godoy, W A C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article Biological control exponentiated models half-normal plots with simulation envelopes location-scale modelling mixed survival models
Beschreibung
Zusammenfassung:© 2019 Informa UK Limited, trading as Taylor & Francis Group.
Survival models have been extensively used to analyse time-until-event data. There is a range of extended models that incorporate different aspects, such as overdispersion/frailty, mixtures, and flexible response functions through semi-parametric models. In this work, we show how a useful tool to assess goodness-of-fit, the half-normal plot of residuals with a simulated envelope, implemented in the hnp package in R, can be used on a location-scale modelling context. We fitted a range of survival models to time-until-event data, where the event was an insect predator attacking a larva in a biological control experiment. We started with the Weibull model and then fitted the exponentiated-Weibull location-scale model with regressors both for the location and scale parameters. We performed variable selection for each model and, by producing half-normal plots with simulated envelopes for the deviance residuals of the model fits, we found that the exponentiated-Weibull fitted the data better. We then included a random effect in the exponentiated-Weibull model to accommodate correlated observations. Finally, we discuss possible implications of the results found in the case study
Beschreibung:Date Revised 16.07.2022
published: Electronic-eCollection
Citation Status PubMed-not-MEDLINE
ISSN:0266-4763
DOI:10.1080/02664763.2019.1693522