Adaptive kernel scaling support vector machine with application to a prostate cancer image study

© 2021 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 49(2022), 6 vom: 14., Seite 1465-1484
1. Verfasser: Liu, Xin (VerfasserIn)
Weitere Verfasser: He, Wenqing
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article Classification data-adaptive kernel imaging data imbalanced data separating hyperplane support vector machine
LEADER 01000caa a22002652c 4500
001 NLM342285017
003 DE-627
005 20250303113527.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2020.1870669  |2 doi 
028 5 2 |a pubmed25n1140.xml 
035 |a (DE-627)NLM342285017 
035 |a (NLM)35707113 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Xin  |e verfasserin  |4 aut 
245 1 0 |a Adaptive kernel scaling support vector machine with application to a prostate cancer image study 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.07.2022 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2021 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a The support vector machine (SVM) is a popularly used classifier in applications such as pattern recognition, texture mining and image retrieval owing to its flexibility and interpretability. However, its performance deteriorates when the response classes are imbalanced. To enhance the performance of the support vector machine classifier in the imbalanced cases we investigate a new two stage method by adaptively scaling the kernel function. Based on the information obtained from the standard SVM in the first stage, we conformally rescale the kernel function in a data adaptive fashion in the second stage so that the separation between two classes can be effectively enlarged with incorporation of observation imbalance. The proposed method takes into account the location of the support vectors in the feature space, therefore is especially appealing when the response classes are imbalanced. The resulting algorithm can efficiently improve the classification accuracy, which is confirmed by intensive numerical studies as well as a real prostate cancer imaging data application 
650 4 |a Journal Article 
650 4 |a Classification 
650 4 |a data-adaptive kernel 
650 4 |a imaging data 
650 4 |a imbalanced data 
650 4 |a separating hyperplane 
650 4 |a support vector machine 
700 1 |a He, Wenqing  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 49(2022), 6 vom: 14., Seite 1465-1484  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnas 
773 1 8 |g volume:49  |g year:2022  |g number:6  |g day:14  |g pages:1465-1484 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2020.1870669  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 49  |j 2022  |e 6  |b 14  |h 1465-1484