A new outlier detection method based on convex optimization : application to diagnosis of Parkinson's disease

© 2020 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 48(2021), 13-15 vom: 14., Seite 2421-2440
1. Verfasser: Taylan, Pakize (VerfasserIn)
Weitere Verfasser: Yerlikaya-Özkurt, Fatma, Bilgiç Uçak, Burcu, Weber, Gerhard-Wilhelm
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article M-estimation Neuroscience convex optimization mean-shift outliers model regression shrinkage
LEADER 01000caa a22002652c 4500
001 NLM342284843
003 DE-627
005 20250303113526.0
007 cr uuu---uuuuu
008 231226s2021 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2020.1864815  |2 doi 
028 5 2 |a pubmed25n1140.xml 
035 |a (DE-627)NLM342284843 
035 |a (NLM)35707096 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Taylan, Pakize  |e verfasserin  |4 aut 
245 1 2 |a A new outlier detection method based on convex optimization  |b application to diagnosis of Parkinson's disease 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.07.2022 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a Neuroscience is a combination of different scientific disciplines which investigate the nervous system for understanding of the biological basis. Recently, applications to the diagnosis of neurodegenerative diseases like Parkinson's disease have become very promising by considering different statistical regression models. However, well-known statistical regression models may give misleading results for the diagnosis of the neurodegenerative diseases when experimental data contain outlier observations that lie an abnormal distance from the other observation. The main achievements of this study consist of a novel mathematics-supported approach beside statistical regression models to identify and treat the outlier observations without direct elimination for a great and emerging challenge in humankind, such as neurodegenerative diseases. By this approach, a new method named as CMTMSOM is proposed with the contributions of the powerful convex and continuous optimization techniques referred to as conic quadratic programing. This method, based on the mean-shift outlier regression model, is developed by combining robustness of M-estimation and stability of Tikhonov regularization. We apply our method and other parametric models on Parkinson telemonitoring dataset which is a real-world dataset in Neuroscience. Then, we compare these methods by using well-known method-free performance measures. The results indicate that the CMTMSOM method performs better than current parametric models 
650 4 |a Journal Article 
650 4 |a M-estimation 
650 4 |a Neuroscience 
650 4 |a convex optimization 
650 4 |a mean-shift outliers model 
650 4 |a regression 
650 4 |a shrinkage 
700 1 |a Yerlikaya-Özkurt, Fatma  |e verfasserin  |4 aut 
700 1 |a Bilgiç Uçak, Burcu  |e verfasserin  |4 aut 
700 1 |a Weber, Gerhard-Wilhelm  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 48(2021), 13-15 vom: 14., Seite 2421-2440  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnas 
773 1 8 |g volume:48  |g year:2021  |g number:13-15  |g day:14  |g pages:2421-2440 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2020.1864815  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 48  |j 2021  |e 13-15  |b 14  |h 2421-2440