Hierarchies in communities of UK stock market from the perspective of Brexit

© 2020 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 48(2021), 13-15 vom: 01., Seite 2607-2625
1. Verfasser: Balcı, Mehmet Ali (VerfasserIn)
Weitere Verfasser: Akgüller, Ömer, Can Güzel, Serdar
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article Financial networks cross correlation minimum spanning tree network communities
LEADER 01000caa a22002652 4500
001 NLM342284762
003 DE-627
005 20240826232321.0
007 cr uuu---uuuuu
008 231226s2021 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2020.1796942  |2 doi 
028 5 2 |a pubmed24n1513.xml 
035 |a (DE-627)NLM342284762 
035 |a (NLM)35707088 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Balcı, Mehmet Ali  |e verfasserin  |4 aut 
245 1 0 |a Hierarchies in communities of UK stock market from the perspective of Brexit 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 26.08.2024 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a Nowadays, increase of analyzing stock markets as complex systems lead graph theory to play a key role. For instance, detecting graph communities is an important task in the analysis of stocks, and as planar maximally filtered graphs let us to get important information for the topology of the market. In this study, we first obtain correlation network representation of UK's leading stock market network by using a novel threshold method. Then, we determine vertex clusters by using modularity and analyze clusters in planar maximally filtered graph substructures. Our analyze include a new measure called weighted Gini index for measuring the sparsity. The main goal of this paper is to study the hierarchical evolution of the market communities throughout the Brexit referendum, which is known as the stress period for the stock market. Hence, the overall sample is divided into two sub-periods of pre-referendum, and post-referendum to obtain communities and hierarchical structures. Our results indicate that financial companies are leading elements of the clusters. Moreover, the significant changes within the network topologies are observed for insurance, consumer goods, consumer services, mining, and technology sectors whereas oil and gas and health care sectors have not been affected by Brexit stress 
650 4 |a Journal Article 
650 4 |a Financial networks 
650 4 |a cross correlation 
650 4 |a minimum spanning tree 
650 4 |a network communities 
700 1 |a Akgüller, Ömer  |e verfasserin  |4 aut 
700 1 |a Can Güzel, Serdar  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 48(2021), 13-15 vom: 01., Seite 2607-2625  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnns 
773 1 8 |g volume:48  |g year:2021  |g number:13-15  |g day:01  |g pages:2607-2625 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2020.1796942  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 48  |j 2021  |e 13-15  |b 01  |h 2607-2625