A two-step machine learning approach to predict S&P 500 bubbles

© 2020 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 48(2021), 13-15 vom: 14., Seite 2776-2794
1. Verfasser: Başoğlu Kabran, Fatma (VerfasserIn)
Weitere Verfasser: Ünlü, Kamil Demirberk
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article Bubbles early warning machine learning macroeconomic indicators support vector machines
LEADER 01000caa a22002652c 4500
001 NLM342284657
003 DE-627
005 20250303113525.0
007 cr uuu---uuuuu
008 231226s2021 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2020.1823947  |2 doi 
028 5 2 |a pubmed25n1140.xml 
035 |a (DE-627)NLM342284657 
035 |a (NLM)35707077 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Başoğlu Kabran, Fatma  |e verfasserin  |4 aut 
245 1 2 |a A two-step machine learning approach to predict S&P 500 bubbles 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.07.2022 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a In this paper, we are interested in predicting the bubbles in the S&P 500 stock market with a two-step machine learning approach that employs a real-time bubble detection test and support vector machine (SVM). SVM as a nonparametric binary classification technique is already a widely used method in financial time series forecasting. In the literature, a bubble is often defined as a situation where the asset price exceeds its fundamental value. As one of the early warning signals, prediction of bubbles is vital for policymakers and regulators who are responsible to take preemptive measures against the future crises. Therefore, many attempts have been made to understand the main factors in bubble formation and to predict them in their earlier phases. Our analysis consists of two steps. The first step is to identify the bubbles in the S&P 500 index using a widely recognized right-tailed unit root test. Then, SVM is employed to predict the bubbles by macroeconomic indicators. Also, we compare SVM with different supervised learning algorithms by using k-fold cross-validation. The experimental results show that the proposed approach with high predictive power could be a favourable alternative in bubble prediction 
650 4 |a Journal Article 
650 4 |a Bubbles 
650 4 |a early warning 
650 4 |a machine learning 
650 4 |a macroeconomic indicators 
650 4 |a support vector machines 
700 1 |a Ünlü, Kamil Demirberk  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 48(2021), 13-15 vom: 14., Seite 2776-2794  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnas 
773 1 8 |g volume:48  |g year:2021  |g number:13-15  |g day:14  |g pages:2776-2794 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2020.1823947  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 48  |j 2021  |e 13-15  |b 14  |h 2776-2794