Forecasting drought using neural network approaches with transformed time series data

© 2020 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 48(2021), 13-15 vom: 14., Seite 2591-2606
1. Verfasser: Ozan Evkaya, O (VerfasserIn)
Weitere Verfasser: Sevinç Kurnaz, Fatma
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article ANN Drought index SPI machine learning nonlinear auto-regressive wavelet
LEADER 01000caa a22002652c 4500
001 NLM342284630
003 DE-627
005 20250303113525.0
007 cr uuu---uuuuu
008 231226s2021 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2020.1867829  |2 doi 
028 5 2 |a pubmed25n1140.xml 
035 |a (DE-627)NLM342284630 
035 |a (NLM)35707075 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ozan Evkaya, O  |e verfasserin  |4 aut 
245 1 0 |a Forecasting drought using neural network approaches with transformed time series data 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.06.2022 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a Drought is one of the important and costliest disaster all over the world. With the accelerated progress of climate change, its frequency of occurrence and negative impacts are rapidly increasing. It is crucial to initiate and sustain an early warning system to monitor and predict the possible impacts of future droughts. Recently, with the rise of data driven models, various case studies are conducted by using Machine Learning algorithms instead of using pure statistical approaches. The main goal of this paper is to conduct a drought forecasting study for a weather station located in Marmara Region. For that purpose, firstly, widely used univariate drought index, Standardized Precipitation Index is calculated for Bursa station. Thereafter, both the historical information retrieved from time series data and its wavelet transformation are considered to investigate Nonlinear Auto-Regressive and Nonlinear Auto-Regressive with External Input (NARX) type Neural Network (NN) models. According to a pool of Goodness-of-Fit (GOF) tests, the forecasting performance of the models with various number of hidden neurons are compared. The recent findings of the study showed that considering the data with its wavelet transformation under (NARX-NN) has benefits to increase the capacity of forecasting the drought index 
650 4 |a Journal Article 
650 4 |a ANN 
650 4 |a Drought index 
650 4 |a SPI 
650 4 |a machine learning 
650 4 |a nonlinear auto-regressive 
650 4 |a wavelet 
700 1 |a Sevinç Kurnaz, Fatma  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 48(2021), 13-15 vom: 14., Seite 2591-2606  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnas 
773 1 8 |g volume:48  |g year:2021  |g number:13-15  |g day:14  |g pages:2591-2606 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2020.1867829  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 48  |j 2021  |e 13-15  |b 14  |h 2591-2606