A bivariate inverse Weibull distribution and its application in complementary risks model

© 2019 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 47(2020), 6 vom: 17., Seite 1084-1108
1. Verfasser: Mondal, Shuvashree (VerfasserIn)
Weitere Verfasser: Kundu, Debasis
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article EM algorithm Gamma-Dirichlet prior Marshall–Olkin bivariate distribution Primary: 62E15 Secondary: 62H10 block and basu bivariate distribution complementary risk maximum likelihood estimation
LEADER 01000naa a22002652 4500
001 NLM342283030
003 DE-627
005 20231226013738.0
007 cr uuu---uuuuu
008 231226s2020 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2019.1669542  |2 doi 
028 5 2 |a pubmed24n1140.xml 
035 |a (DE-627)NLM342283030 
035 |a (NLM)35706915 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Mondal, Shuvashree  |e verfasserin  |4 aut 
245 1 2 |a A bivariate inverse Weibull distribution and its application in complementary risks model 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.07.2022 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2019 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a In reliability and survival analysis the inverse Weibull distribution has been used quite extensively as a heavy tailed distribution with a non-monotone hazard function. Recently a bivariate inverse Weibull (BIW) distribution has been introduced in the literature, where the marginals have inverse Weibull distributions and it has a singular component. Due to this reason this model cannot be used when there are no ties in the data. In this paper we have introduced an absolutely continuous bivariate inverse Weibull (ACBIW) distribution omitting the singular component from the BIW distribution. A natural application of this model can be seen in the analysis of dependent complementary risks data. We discuss different properties of this model and also address the inferential issues both from the classical and Bayesian approaches. In the classical approach, the maximum likelihood estimators cannot be obtained explicitly and we propose to use the expectation maximization algorithm based on the missing value principle. In the Bayesian analysis, we use a very flexible prior on the unknown model parameters and obtain the Bayes estimates and the associated credible intervals using importance sampling technique. Simulation experiments are performed to see the effectiveness of the proposed methods and two data sets have been analyzed to see how the proposed methods and the model work in practice 
650 4 |a Journal Article 
650 4 |a EM algorithm 
650 4 |a Gamma-Dirichlet prior 
650 4 |a Marshall–Olkin bivariate distribution 
650 4 |a Primary: 62E15 
650 4 |a Secondary: 62H10 
650 4 |a block and basu bivariate distribution 
650 4 |a complementary risk 
650 4 |a maximum likelihood estimation 
700 1 |a Kundu, Debasis  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 47(2020), 6 vom: 17., Seite 1084-1108  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnns 
773 1 8 |g volume:47  |g year:2020  |g number:6  |g day:17  |g pages:1084-1108 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2019.1669542  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 47  |j 2020  |e 6  |b 17  |h 1084-1108