Pairwise influences in dynamic choice : network-based model and application

© 2020 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 48(2021), 7 vom: 01., Seite 1269-1302
1. Verfasser: Nasini, Stefano (VerfasserIn)
Weitere Verfasser: Martínez-de-Albéniz, Victor
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article 05C82 62-07 62Fxx 90C10 91G70 Network influences cross-sectional dependencies exponential family of distributions multidimensional panel data music broadcasting industry
LEADER 01000caa a22002652 4500
001 NLM342282751
003 DE-627
005 20240826232321.0
007 cr uuu---uuuuu
008 231226s2021 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2020.1761948  |2 doi 
028 5 2 |a pubmed24n1513.xml 
035 |a (DE-627)NLM342282751 
035 |a (NLM)35706887 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Nasini, Stefano  |e verfasserin  |4 aut 
245 1 0 |a Pairwise influences in dynamic choice  |b network-based model and application 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 26.08.2024 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a In this paper, we study the problem of network discovery and influence propagation, and propose an integrated approach for the analysis of lead-lag synchronization in multiple choices. Network models for the processes by which decisions propagate through social interaction have been studied before, but only a few consider unknown structures of interacting agents. In fact, while individual choices are typically observed, inferring individual influences - who influences who - from sequences of dynamic choices requires strong modeling assumptions on the cross-section dependencies of the observed panels. We propose a class of parametric models which extends the vector autoregression to the case of pairwise influences between individual choices over multiple items and supports the analysis of influence propagation. After uncovering a collection of theoretical properties (conditional moments, parameter sensitivity, identifiability and estimation), we provide an economic application to music broadcasting, where a set of songs are diffused over radio stations; we infer station-to-station influences based on the proposed methodology and assess the propagation effect of initial launching stations to maximize songs diffusion. Both on the theoretical and empirical sides, the proposed approach connects fields which are traditionally treated as separated areas: the problem of network discovery and the one of influence propagation 
650 4 |a Journal Article 
650 4 |a 05C82 
650 4 |a 62-07 
650 4 |a 62Fxx 
650 4 |a 90C10 
650 4 |a 91G70 
650 4 |a Network influences 
650 4 |a cross-sectional dependencies 
650 4 |a exponential family of distributions 
650 4 |a multidimensional panel data 
650 4 |a music broadcasting industry 
700 1 |a Martínez-de-Albéniz, Victor  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 48(2021), 7 vom: 01., Seite 1269-1302  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnns 
773 1 8 |g volume:48  |g year:2021  |g number:7  |g day:01  |g pages:1269-1302 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2020.1761948  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 48  |j 2021  |e 7  |b 01  |h 1269-1302