A new Poisson Liu Regression Estimator : method and application

© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 47(2020), 12 vom: 30., Seite 2258-2271
1. Verfasser: Qasim, Muhammad (VerfasserIn)
Weitere Verfasser: Kibria, B M G, Månsson, Kristofer, Sjölander, Pär
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article Liu estimator MLE MSE Poisson regression shrinkage estimators simulation study
Beschreibung
Zusammenfassung:© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This paper considers the estimation of parameters for the Poisson regression model in the presence of high, but imperfect multicollinearity. To mitigate this problem, we suggest using the Poisson Liu Regression Estimator (PLRE) and propose some new approaches to estimate this shrinkage parameter. The small sample statistical properties of these estimators are systematically scrutinized using Monte Carlo simulations. To evaluate the performance of these estimators, we assess the Mean Square Errors (MSE) and the Mean Absolute Percentage Errors (MAPE). The simulation results clearly illustrate the benefit of the methods of estimating these types of shrinkage parameters in finite samples. Finally, we illustrate the empirical relevance of our newly proposed methods using an empirically relevant application. Thus, in summary, via simulations of empirically relevant parameter values, and by a standard empirical application, it is clearly demonstrated that our technique exhibits more precise estimators, compared to traditional techniques - at least when multicollinearity exist among the regressors
Beschreibung:Date Revised 16.06.2022
published: Electronic-eCollection
Citation Status PubMed-not-MEDLINE
ISSN:0266-4763
DOI:10.1080/02664763.2019.1707485