A statistical methodology to select covariates in high-dimensional data under dependence. Application to the classification of genetic profiles in oncology

© 2020 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 49(2022), 3 vom: 01., Seite 764-781
1. Verfasser: Bastien, B (VerfasserIn)
Weitere Verfasser: Boukhobza, T, Dumond, H, Gégout-Petit, A, Muller-Gueudin, A, Thiébaut, C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article Aggregated methods correlated covariates selection genetic profiles high dimension multiple testing procedures personalized medicine ranking variable selection
LEADER 01000caa a22002652 4500
001 NLM342281550
003 DE-627
005 20240826232321.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2020.1837083  |2 doi 
028 5 2 |a pubmed24n1513.xml 
035 |a (DE-627)NLM342281550 
035 |a (NLM)35706767 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bastien, B  |e verfasserin  |4 aut 
245 1 2 |a A statistical methodology to select covariates in high-dimensional data under dependence. Application to the classification of genetic profiles in oncology 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 26.08.2024 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a We propose a new methodology for selecting and ranking covariates associated with a variable of interest in a context of high-dimensional data under dependence but few observations. The methodology successively intertwines the clustering of covariates, decorrelation of covariates using Factor Latent Analysis, selection using aggregation of adapted methods and finally ranking. A simulation study shows the interest of the decorrelation inside the different clusters of covariates. We first apply our method to transcriptomic data of 37 patients with advanced non-small-cell lung cancer who have received chemotherapy, to select the transcriptomic covariates that explain the survival outcome of the treatment. Secondly, we apply our method to 79 breast tumor samples to define patient profiles for a new metastatic biomarker and associated gene network in order to personalize the treatments 
650 4 |a Journal Article 
650 4 |a Aggregated methods 
650 4 |a correlated covariates selection 
650 4 |a genetic profiles 
650 4 |a high dimension 
650 4 |a multiple testing procedures 
650 4 |a personalized medicine 
650 4 |a ranking 
650 4 |a variable selection 
700 1 |a Boukhobza, T  |e verfasserin  |4 aut 
700 1 |a Dumond, H  |e verfasserin  |4 aut 
700 1 |a Gégout-Petit, A  |e verfasserin  |4 aut 
700 1 |a Muller-Gueudin, A  |e verfasserin  |4 aut 
700 1 |a Thiébaut, C  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 49(2022), 3 vom: 01., Seite 764-781  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnns 
773 1 8 |g volume:49  |g year:2022  |g number:3  |g day:01  |g pages:764-781 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2020.1837083  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 49  |j 2022  |e 3  |b 01  |h 764-781