A proportional-hazards model for survival analysis and long-term survivors modeling : application to amyotrophic lateral sclerosis data

© 2020 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 49(2022), 3 vom: 01., Seite 694-708
1. Verfasser: Hamdeni, Tasnime (VerfasserIn)
Weitere Verfasser: Gasmi, Soufiane
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article 62Exx 62Fxx 62Jxx 62Nxx 62P10 Amyotrophic lateral sclerosis defective modeling parameter estimation proportional-hazards
Beschreibung
Zusammenfassung:© 2020 Informa UK Limited, trading as Taylor & Francis Group.
The majority of survival data are affected by explanatory variables. We develop a new regression model for survival data analysis. As an alternative to standard mixture models, another model is proposed to describe the eventual presence of a surviving fraction. The proposed models are based on the Marshall-Olkin extended generalized Gompertz distribution. A maximum-likelihood inference is presented in the presence of covariates and a censorship phenomenon. Explanatory variables are incorporated into the model through proportional-hazards to evaluate the effect of risk factors on overall survival under different assumptions. Parametric, semi-parametric, and non-parametric methods are applied to survival analysis of patients treated for amyotrophic lateral sclerosis. Interesting results about riluzole use and other treatment effects on patients' survival have been obtained
Beschreibung:Date Revised 26.08.2024
published: Electronic-eCollection
Citation Status PubMed-not-MEDLINE
ISSN:0266-4763
DOI:10.1080/02664763.2020.1830954