A Clipped Gaussian Geo-Classification model for poverty mapping

© 2020 Informa UK Limited, trading as Taylor & Francis Group.

Détails bibliographiques
Publié dans:Journal of applied statistics. - 1991. - 48(2021), 10 vom: 17., Seite 1882-1895
Auteur principal: Puurbalanta, Richard (Auteur)
Format: Article en ligne
Langue:English
Publié: 2021
Accès à la collection:Journal of applied statistics
Sujets:Journal Article Bayesian estimation via MCMC Gaussian random fields Ordered responses poverty classification spatial correlation
LEADER 01000caa a22002652c 4500
001 NLM34228102X
003 DE-627
005 20250303113501.0
007 cr uuu---uuuuu
008 231226s2021 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2020.1779191  |2 doi 
028 5 2 |a pubmed25n1140.xml 
035 |a (DE-627)NLM34228102X 
035 |a (NLM)35706714 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Puurbalanta, Richard  |e verfasserin  |4 aut 
245 1 2 |a A Clipped Gaussian Geo-Classification model for poverty mapping 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 26.08.2024 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a The importance of discrete spatial models cannot be overemphasized, especially when measuring living standards. The battery of measurements is generally categorical with nearer geo-referenced observations featuring stronger dependencies. This study presents a Clipped Gaussian Geo-Classification (CGG-C) model for spatially-dependent ordered data, and compares its performance with existing methods to classify household poverty using Ghana living standards survey (GLSS 6) data. Bayesian inference was performed on data sampled by MCMC. Model evaluation was based on measures of classification and prediction accuracy. Spatial associations, given some household features, were quantified, and a poverty classification map for Ghana was developed. Overall, the results of estimation showed that many of the statistically significant covariates were generally strongly related with the ordered response variable. Households at specific locations tended to uniformly experience specific levels of poverty, thus, providing an empirical spatial character of poverty in Ghana. A comparative analysis of validation results showed that the CGG-C model (with 14.2% misclassification rate) outperformed the Cumulative Probit (CP) model with misclassification rate of 17.4%. This approach to poverty analysis is relevant for policy design and the implementation of cost-effective programmes to reduce category and site-specific poverty incidence, and monitor changes in both category and geographical trends thereof 
650 4 |a Journal Article 
650 4 |a Bayesian estimation via MCMC 
650 4 |a Gaussian random fields 
650 4 |a Ordered responses 
650 4 |a poverty classification 
650 4 |a spatial correlation 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 48(2021), 10 vom: 17., Seite 1882-1895  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnas 
773 1 8 |g volume:48  |g year:2021  |g number:10  |g day:17  |g pages:1882-1895 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2020.1779191  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 48  |j 2021  |e 10  |b 17  |h 1882-1895