Model-free slice screening for ultrahigh-dimensional survival data

© 2020 Informa UK Limited, trading as Taylor & Francis Group.

Détails bibliographiques
Publié dans:Journal of applied statistics. - 1991. - 48(2021), 10 vom: 17., Seite 1755-1774
Auteur principal: Zhang, Jing (Auteur)
Autres auteurs: Liu, Yanyan
Format: Article en ligne
Langue:English
Publié: 2021
Accès à la collection:Journal of applied statistics
Sujets:Journal Article Censoring fused Kolmogorov–Smirnov filter slice method sure independent screening property ultrahigh-dimensional survival data
LEADER 01000caa a22002652c 4500
001 NLM342281003
003 DE-627
005 20250303113501.0
007 cr uuu---uuuuu
008 231226s2021 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2020.1772734  |2 doi 
028 5 2 |a pubmed25n1140.xml 
035 |a (DE-627)NLM342281003 
035 |a (NLM)35706712 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Jing  |e verfasserin  |4 aut 
245 1 0 |a Model-free slice screening for ultrahigh-dimensional survival data 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.07.2022 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a For ultrahigh-dimensional data, independent feature screening has been demonstrated both theoretically and empirically to be an effective dimension reduction method with low computational demanding. Motivated by the Buckley-James method to accommodate censoring, we propose a fused Kolmogorov-Smirnov filter to screen out the irrelevant dependent variables for ultrahigh-dimensional survival data. The proposed model-free screening method can work with many types of covariates (e.g. continuous, discrete and categorical variables) and is shown to enjoy the sure independent screening property under mild regularity conditions without requiring any moment conditions on covariates. In particular, the proposed procedure can still be powerful when covariates are strongly dependent on each other. We further develop an iterative algorithm to enhance the performance of our method while dealing with the practical situations where some covariates may be marginally unrelated but jointly related to the response. We conduct extensive simulations to evaluate the finite-sample performance of the proposed method, showing that it has favourable exhibition over the existing typical methods. As an illustration, we apply the proposed method to the diffuse large-B-cell lymphoma study 
650 4 |a Journal Article 
650 4 |a Censoring 
650 4 |a fused Kolmogorov–Smirnov filter 
650 4 |a slice method 
650 4 |a sure independent screening property 
650 4 |a ultrahigh-dimensional survival data 
700 1 |a Liu, Yanyan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 48(2021), 10 vom: 17., Seite 1755-1774  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnas 
773 1 8 |g volume:48  |g year:2021  |g number:10  |g day:17  |g pages:1755-1774 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2020.1772734  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 48  |j 2021  |e 10  |b 17  |h 1755-1774