Physically constrained spatiotemporal modeling : generating clear-sky constructions of land surface temperature from sparse, remotely sensed satellite data

© 2019 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 47(2020), 8 vom: 01., Seite 1439-1459
1. Verfasser: Collins, Gavin Q (VerfasserIn)
Weitere Verfasser: Heaton, Matthew J, Hu, Leiqiu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article Areal data Bayesian hierarchical model diurnal cycle satellite observations spatial basis functions
LEADER 01000naa a22002652 4500
001 NLM342280899
003 DE-627
005 20231226013735.0
007 cr uuu---uuuuu
008 231226s2020 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2019.1681384  |2 doi 
028 5 2 |a pubmed24n1140.xml 
035 |a (DE-627)NLM342280899 
035 |a (NLM)35706701 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Collins, Gavin Q  |e verfasserin  |4 aut 
245 1 0 |a Physically constrained spatiotemporal modeling  |b generating clear-sky constructions of land surface temperature from sparse, remotely sensed satellite data 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.07.2022 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2019 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a Satellite remote-sensing is used to collect important atmospheric and geophysical data at various spatial resolutions, providing insight into spatiotemporal surface and climate variability globally. These observations are often plagued with missing spatial and temporal information of Earth's surface due to (1) cloud cover at the time of a satellite passing and (2) infrequent passing of polar-orbiting satellites. While many methods are available to model missing data in space and time, in the case of land surface temperature (LST) from thermal infrared remote sensing, these approaches generally ignore the temporal pattern called the 'diurnal cycle' which physically constrains temperatures to peak in the early afternoon and reach a minimum at sunrise. In order to infill an LST dataset, we parameterize the diurnal cycle into a functional form with unknown spatiotemporal parameters. Using multiresolution spatial basis functions, we estimate these parameters from sparse satellite observations to reconstruct an LST field with continuous spatial and temporal distributions. These estimations may then be used to better inform scientists of spatiotemporal thermal patterns over relatively complex domains. The methodology is demonstrated using data collected by MODIS on NASA's Aqua and Terra satellites over both Houston, TX and Phoenix, AZ USA 
650 4 |a Journal Article 
650 4 |a Areal data 
650 4 |a Bayesian hierarchical model 
650 4 |a diurnal cycle 
650 4 |a satellite observations 
650 4 |a spatial basis functions 
700 1 |a Heaton, Matthew J  |e verfasserin  |4 aut 
700 1 |a Hu, Leiqiu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 47(2020), 8 vom: 01., Seite 1439-1459  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnns 
773 1 8 |g volume:47  |g year:2020  |g number:8  |g day:01  |g pages:1439-1459 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2019.1681384  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 47  |j 2020  |e 8  |b 01  |h 1439-1459