Optimal allocation of subjects in a matched pair cluster-randomized trial with fixed number of heterogeneous clusters

© 2020 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 48(2021), 9 vom: 12., Seite 1527-1540
1. Verfasser: Singh, Satya Prakash (VerfasserIn)
Weitere Verfasser: Yadav, Pradeep
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article Bayesian design cluster-randomized trials efficiency matched pair clusters optimal design power
LEADER 01000caa a22002652c 4500
001 NLM342279637
003 DE-627
005 20250303113453.0
007 cr uuu---uuuuu
008 231226s2021 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2020.1779195  |2 doi 
028 5 2 |a pubmed25n1140.xml 
035 |a (DE-627)NLM342279637 
035 |a (NLM)35706575 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Singh, Satya Prakash  |e verfasserin  |4 aut 
245 1 0 |a Optimal allocation of subjects in a matched pair cluster-randomized trial with fixed number of heterogeneous clusters 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.08.2024 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a In cluster-randomized trials, investigators randomize clusters of individuals such as households, medical practices, schools or classrooms despite the unit of interest are the individuals. It results in the loss of efficiency in terms of the estimation of the unknown parameters as well as the power of the test for testing the treatment effects. To recoup this efficiency loss, some studies pair similar clusters and randomize treatment within pairs. However, the clusters within a treatment arm might be heterogeneous in nature. In this article, we propose a locally optimal design that accounts the clusters heterogeneity and optimally allocates the subjects within each cluster. To address the dependency of design on the unknown parameters, we also discuss Bayesian optimal designs. Performances of proposed designs are investigated numerically through some data examples 
650 4 |a Journal Article 
650 4 |a Bayesian design 
650 4 |a cluster-randomized trials 
650 4 |a efficiency 
650 4 |a matched pair clusters 
650 4 |a optimal design 
650 4 |a power 
700 1 |a Yadav, Pradeep  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 48(2021), 9 vom: 12., Seite 1527-1540  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnas 
773 1 8 |g volume:48  |g year:2021  |g number:9  |g day:12  |g pages:1527-1540 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2020.1779195  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 48  |j 2021  |e 9  |b 12  |h 1527-1540