|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM342279602 |
003 |
DE-627 |
005 |
20240826232320.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2021 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1080/02664763.2020.1773772
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1513.xml
|
035 |
|
|
|a (DE-627)NLM342279602
|
035 |
|
|
|a (NLM)35706572
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Petersen, Anne Helby
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Exploratory data structure comparisons
|b three new visual tools based on principal component analysis
|
264 |
|
1 |
|c 2021
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 26.08.2024
|
500 |
|
|
|a published: Electronic-eCollection
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2020 Informa UK Limited, trading as Taylor & Francis Group.
|
520 |
|
|
|a Datasets are sometimes divided into distinct subsets, e.g. due to multi-center sampling, or to variations in instruments, questionnaire item ordering or mode of administration, and the data analyst then needs to assess whether a joint analysis is meaningful. The Principal Component Analysis-based Data Structure Comparisons (PCADSC) tools are three new non-parametric, visual diagnostic tools for investigating differences in structure for two subsets of a dataset through covariance matrix comparisons by use of principal component analysis. The PCADCS tools are demonstrated in a data example using European Social Survey data on psychological well-being in three countries, Denmark, Sweden, and Bulgaria. The data structures are found to be different in Denmark and Bulgaria, and thus a comparison of for example mean psychological well-being scores is not meaningful. However, when comparing Denmark and Sweden, very similar data structures, and thus comparable concepts of well-being, are found. Therefore, inter-country comparisons are warranted for these countries
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a 62H25
|
650 |
|
4 |
|a 62P15
|
650 |
|
4 |
|a Principal component analysis
|
650 |
|
4 |
|a covariance matrix
|
650 |
|
4 |
|a data structure
|
650 |
|
4 |
|a exploratory data analysis
|
700 |
1 |
|
|a Markussen, Bo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Christensen, Karl Bang
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of applied statistics
|d 1991
|g 48(2021), 9 vom: 01., Seite 1675-1695
|w (DE-627)NLM098188178
|x 0266-4763
|7 nnns
|
773 |
1 |
8 |
|g volume:48
|g year:2021
|g number:9
|g day:01
|g pages:1675-1695
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1080/02664763.2020.1773772
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 48
|j 2021
|e 9
|b 01
|h 1675-1695
|