Confidence limits for conformance proportions in normal mixture models

© 2020 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 48(2021), 9 vom: 12., Seite 1579-1602
1. Verfasser: Tsai, Shin-Fu (VerfasserIn)
Weitere Verfasser: Huang, Tse-Le
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article Generalized fiducial inference Markov chain Monte Carlo interval estimation latent variable quality control
LEADER 01000caa a22002652c 4500
001 NLM342279572
003 DE-627
005 20250303113453.0
007 cr uuu---uuuuu
008 231226s2021 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2020.1769578  |2 doi 
028 5 2 |a pubmed25n1140.xml 
035 |a (DE-627)NLM342279572 
035 |a (NLM)35706569 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tsai, Shin-Fu  |e verfasserin  |4 aut 
245 1 0 |a Confidence limits for conformance proportions in normal mixture models 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.07.2022 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a Conformance proportions are important numerical indices for quality assessments. When the population is characterized by a normal mixture model, estimating conformance proportions can be a practical issue. To account for the inherent structure of normal mixture models, universal and individual conformance proportions are first defined for the purpose of evaluating the overall population and specific subpopulations of interest, respectively. On the basis of generalized fiducial quantities, a systematic method is then proposed in this paper to obtain confidence limits for the two classes of conformance proportions. The simulation results demonstrate that the proposed method can maintain the empirical coverage rate sufficiently close to the nominal level. In addition, two examples are given to illustrate the proposed method 
650 4 |a Journal Article 
650 4 |a Generalized fiducial inference 
650 4 |a Markov chain Monte Carlo 
650 4 |a interval estimation 
650 4 |a latent variable 
650 4 |a quality control 
700 1 |a Huang, Tse-Le  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 48(2021), 9 vom: 12., Seite 1579-1602  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnas 
773 1 8 |g volume:48  |g year:2021  |g number:9  |g day:12  |g pages:1579-1602 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2020.1769578  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 48  |j 2021  |e 9  |b 12  |h 1579-1602