Investigating emergent nested geographic structure in consumer purchases : a Bayesian dynamic multi-scale spatiotemporal modeling approach

© 2020 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 48(2021), 3 vom: 12., Seite 410-433
1. Verfasser: Wang, Xia (VerfasserIn)
Weitere Verfasser: Pancras, Joseph, Dey, Dipak K
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article Clustering Markov chain Monte Carlo methods dynamic linear models empirical Bayes methods multi-scale modeling spatial models
LEADER 01000naa a22002652 4500
001 NLM342279246
003 DE-627
005 20231226013733.0
007 cr uuu---uuuuu
008 231226s2021 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2020.1725810  |2 doi 
028 5 2 |a pubmed24n1140.xml 
035 |a (DE-627)NLM342279246 
035 |a (NLM)35706537 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Xia  |e verfasserin  |4 aut 
245 1 0 |a Investigating emergent nested geographic structure in consumer purchases  |b a Bayesian dynamic multi-scale spatiotemporal modeling approach 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.07.2022 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a Spatial modeling of consumer response data has gained increased interest recently in the marketing literature. In this paper, we extend the (spatial) multi-scale model by incorporating both spatial and temporal dimensions in the dynamic multi-scale spatiotemporal modeling approach. Our empirical application with a US company's catalog purchase data for the period 1997-2001 reveals a nested geographic market structure that spans geopolitical boundaries such as state borders. This structure identifies spatial clusters of consumers who exhibit similar spatiotemporal behavior, thus pointing to the importance of emergent geographic structure, emergent nested structure and dynamic patterns in multi-resolution methods. The multi-scale model also has better performance in estimation and prediction compared with several spatial and spatiotemporal models and uses a scalable and computationally efficient Markov chain Monte Carlo method that makes it suitable for analyzing large spatiotemporal consumer purchase datasets 
650 4 |a Journal Article 
650 4 |a Clustering 
650 4 |a Markov chain Monte Carlo methods 
650 4 |a dynamic linear models 
650 4 |a empirical Bayes methods 
650 4 |a multi-scale modeling 
650 4 |a spatial models 
700 1 |a Pancras, Joseph  |e verfasserin  |4 aut 
700 1 |a Dey, Dipak K  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 48(2021), 3 vom: 12., Seite 410-433  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnns 
773 1 8 |g volume:48  |g year:2021  |g number:3  |g day:12  |g pages:410-433 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2020.1725810  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 48  |j 2021  |e 3  |b 12  |h 410-433