Are Graph Convolutional Networks With Random Weights Feasible?

Graph Convolutional Networks (GCNs), as a prominent example of graph neural networks, are receiving extensive attention for their powerful capability in learning node representations on graphs. There are various extensions, either in sampling and/or node feature aggregation, to further improve GCNs&...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 3 vom: 14. März, Seite 2751-2768
1. Verfasser: Huang, Changqin (VerfasserIn)
Weitere Verfasser: Li, Ming, Cao, Feilong, Fujita, Hamido, Li, Zhao, Wu, Xindong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article