Image Quality Assessment Using Contrastive Learning
We consider the problem of obtaining image quality representations in a self-supervised manner. We use prediction of distortion type and degree as an auxiliary task to learn features from an unlabeled image dataset containing a mixture of synthetic and realistic distortions. We then train a deep Con...
| Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 14., Seite 4149-4161 |
|---|---|
| 1. Verfasser: | |
| Weitere Verfasser: | , , , |
| Format: | Online-Aufsatz |
| Sprache: | English |
| Veröffentlicht: |
2022
|
| Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
| Schlagworte: | Journal Article |
| Online verfügbar |
Volltext |