Human Action Recognition From Various Data Modalities : A Review

Human Action Recognition (HAR) aims to understand human behavior and assign a label to each action. It has a wide range of applications, and therefore has been attracting increasing attention in the field of computer vision. Human actions can be represented using various data modalities, such as RGB...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 3 vom: 14. März, Seite 3200-3225
1. Verfasser: Sun, Zehua (VerfasserIn)
Weitere Verfasser: Ke, Qiuhong, Rahmani, Hossein, Bennamoun, Mohammed, Wang, Gang, Liu, Jun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Review Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM342217941
003 DE-627
005 20231226013607.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3183112  |2 doi 
028 5 2 |a pubmed24n1140.xml 
035 |a (DE-627)NLM342217941 
035 |a (NLM)35700242 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sun, Zehua  |e verfasserin  |4 aut 
245 1 0 |a Human Action Recognition From Various Data Modalities  |b A Review 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.04.2023 
500 |a Date Revised 05.05.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Human Action Recognition (HAR) aims to understand human behavior and assign a label to each action. It has a wide range of applications, and therefore has been attracting increasing attention in the field of computer vision. Human actions can be represented using various data modalities, such as RGB, skeleton, depth, infrared, point cloud, event stream, audio, acceleration, radar, and WiFi signal, which encode different sources of useful yet distinct information and have various advantages depending on the application scenarios. Consequently, lots of existing works have attempted to investigate different types of approaches for HAR using various modalities. In this article, we present a comprehensive survey of recent progress in deep learning methods for HAR based on the type of input data modality. Specifically, we review the current mainstream deep learning methods for single data modalities and multiple data modalities, including the fusion-based and the co-learning-based frameworks. We also present comparative results on several benchmark datasets for HAR, together with insightful observations and inspiring future research directions 
650 4 |a Review 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Ke, Qiuhong  |e verfasserin  |4 aut 
700 1 |a Rahmani, Hossein  |e verfasserin  |4 aut 
700 1 |a Bennamoun, Mohammed  |e verfasserin  |4 aut 
700 1 |a Wang, Gang  |e verfasserin  |4 aut 
700 1 |a Liu, Jun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 3 vom: 14. März, Seite 3200-3225  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:3  |g day:14  |g month:03  |g pages:3200-3225 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3183112  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 3  |b 14  |c 03  |h 3200-3225