Weakly Supervised Learning for Textbook Question Answering

Textbook Question Answering (TQA) is the task of answering diagram and non-diagram questions given large multi-modal contexts consisting of abundant text and diagrams. Deep text understandings and effective learning of diagram semantics are important for this task due to its specificity. In this pap...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 01., Seite 7378-7388
1. Verfasser: Ma, Jie (VerfasserIn)
Weitere Verfasser: Chai, Qi, Huang, Jingyue, Liu, Jun, You, Yang, Zheng, Qinghua
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM342093118
003 DE-627
005 20231226013303.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3180563  |2 doi 
028 5 2 |a pubmed24n1140.xml 
035 |a (DE-627)NLM342093118 
035 |a (NLM)35687625 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ma, Jie  |e verfasserin  |4 aut 
245 1 0 |a Weakly Supervised Learning for Textbook Question Answering 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 02.12.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Textbook Question Answering (TQA) is the task of answering diagram and non-diagram questions given large multi-modal contexts consisting of abundant text and diagrams. Deep text understandings and effective learning of diagram semantics are important for this task due to its specificity. In this paper, we propose a Weakly Supervised learning method for TQA (WSTQ), which regards the incompletely accurate results of essential intermediate procedures for this task as supervision to develop Text Matching (TM) and Relation Detection (RD) tasks and then employs the tasks to motivate itself to learn strong text comprehension and excellent diagram semantics respectively. Specifically, we apply the result of text retrieval to build positive as well as negative text pairs. In order to learn deep text understandings, we first pre-train the text understanding module of WSTQ on TM and then fine-tune it on TQA. We build positive as well as negative relation pairs by checking whether there is any overlap between the items/regions detected from diagrams using object detection. The RD task forces our method to learn the relationships between regions, which are crucial to express the diagram semantics. We train WSTQ on RD and TQA simultaneously, i.e., multitask learning, to obtain effective diagram semantics and then improve the TQA performance. Extensive experiments are carried out on CK12-QA and AI2D to verify the effectiveness of WSTQ. Experimental results show that our method achieves significant accuracy improvements of 5.02% and 4.12% on test splits of the above datasets respectively than the current state-of-the-art baseline. We have released our code on https://github.com/dr-majie/WSTQ 
650 4 |a Journal Article 
700 1 |a Chai, Qi  |e verfasserin  |4 aut 
700 1 |a Huang, Jingyue  |e verfasserin  |4 aut 
700 1 |a Liu, Jun  |e verfasserin  |4 aut 
700 1 |a You, Yang  |e verfasserin  |4 aut 
700 1 |a Zheng, Qinghua  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 01., Seite 7378-7388  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:01  |g pages:7378-7388 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3180563  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 01  |h 7378-7388