Learning Structural Representations for Recipe Generation and Food Retrieval

Food is significant to human daily life. In this paper, we are interested in learning structural representations for lengthy recipes, that can benefit the recipe generation and food cross-modal retrieval tasks. Different from the common vision-language data, here the food images contain mixed ingred...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 3 vom: 01. März, Seite 3363-3377
1. Verfasser: Wang, Hao (VerfasserIn)
Weitere Verfasser: Lin, Guosheng, Hoi, Steven C H, Miao, Chunyan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM342093088
003 DE-627
005 20231226013303.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3181294  |2 doi 
028 5 2 |a pubmed24n1140.xml 
035 |a (DE-627)NLM342093088 
035 |a (NLM)35687622 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Hao  |e verfasserin  |4 aut 
245 1 0 |a Learning Structural Representations for Recipe Generation and Food Retrieval 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.04.2023 
500 |a Date Revised 05.05.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Food is significant to human daily life. In this paper, we are interested in learning structural representations for lengthy recipes, that can benefit the recipe generation and food cross-modal retrieval tasks. Different from the common vision-language data, here the food images contain mixed ingredients and target recipes are lengthy paragraphs, where we do not have annotations on structure information. To address the above limitations, we propose a novel method to unsupervisedly learn the sentence-level tree structures for the cooking recipes. Our approach brings together several novel ideas in a systematic framework: (1) exploiting an unsupervised learning approach to obtain the sentence-level tree structure labels before training; (2) generating trees of target recipes from images with the supervision of tree structure labels learned from (1); and (3) integrating the learned tree structures into the recipe generation and food cross-modal retrieval procedure. Our proposed model can produce good-quality sentence-level tree structures and coherent recipes. We achieve the state-of-the-art recipe generation and food cross-modal retrieval performance on the benchmark Recipe1M dataset 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Lin, Guosheng  |e verfasserin  |4 aut 
700 1 |a Hoi, Steven C H  |e verfasserin  |4 aut 
700 1 |a Miao, Chunyan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 3 vom: 01. März, Seite 3363-3377  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:3  |g day:01  |g month:03  |g pages:3363-3377 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3181294  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 3  |b 01  |c 03  |h 3363-3377