Optimization Induced Equilibrium Networks : An Explicit Optimization Perspective for Understanding Equilibrium Models

To reveal the mystery behind deep neural networks (DNNs), optimization may offer a good perspective. There are already some clues showing the strong connection between DNNs and optimization problems, e.g., under a mild condition, DNN's activation function is indeed a proximal operator. In this...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 3 vom: 01. März, Seite 3604-3616
1. Verfasser: Xie, Xingyu (VerfasserIn)
Weitere Verfasser: Wang, Qiuhao, Ling, Zenan, Li, Xia, Liu, Guangcan, Lin, Zhouchen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:To reveal the mystery behind deep neural networks (DNNs), optimization may offer a good perspective. There are already some clues showing the strong connection between DNNs and optimization problems, e.g., under a mild condition, DNN's activation function is indeed a proximal operator. In this paper, we are committed to providing a unified optimization induced interpretability for a special class of networks-equilibrium models, i.e., neural networks defined by fixed point equations, which have become increasingly attractive recently. To this end, we first decompose DNNs into a new class of unit layer that is the proximal operator of an implicit convex function while keeping its output unchanged. Then, the equilibrium model of the unit layer can be derived, we name it Optimization Induced Equilibrium Networks (OptEq). The equilibrium point of OptEq can be theoretically connected to the solution of a convex optimization problem with explicit objectives. Based on this, we can flexibly introduce prior properties to the equilibrium points: 1) modifying the underlying convex problems explicitly so as to change the architectures of OptEq; and 2) merging the information into the fixed point iteration, which guarantees to choose the desired equilibrium point when the fixed point set is non-singleton. We show that OptEq outperforms previous implicit models even with fewer parameters
Beschreibung:Date Completed 07.04.2023
Date Revised 07.04.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1939-3539
DOI:10.1109/TPAMI.2022.3181425