Dendrite-Free and Long-Cycling Lithium Metal Battery Enabled by Ultrathin, 2D Shield-Defensive, and Single Lithium-Ion Conducting Polymeric Membrane

© 2022 Wiley-VCH GmbH.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 33 vom: 01. Aug., Seite e2108437
Auteur principal: Liu, Qiantong (Auteur)
Autres auteurs: Liu, Ruliang, Cui, Yin, Zhou, Minghong, Zeng, Junkui, Zheng, Bingna, Liu, Shaohong, Zhu, Youlong, Wu, Dingcai
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article 2D molecular brushes layer-by-layer stacking lithium metal batteries polymeric membranes shield defense
Description
Résumé:© 2022 Wiley-VCH GmbH.
Polymeric membranes are considered as promising materials to realize safe and long-life lithium metal batteries (LMBs). However, they are usually based on soft 1D linear polymers and thus cannot effectively inhibit piercing of lithium dendrites at high current density. Herein, single lithium-ion conducting molecular brushes (GO-g-PSSLi) are successfully designed and fabricated with a new 2D "soft-hard-soft" hierarchical structure by grafting hairy lithium polystyrenesulfonate (PSSLi) chains on both sides of graphene oxide (GO) sheets. The ultrathin GO-g-PSSLi membrane is further constructed by evaporation-induced layer-by-layer self-assembly of GO-g-PSSLi molecular brushes. Unlike conventional soft 1D linear polymeric structure, the rigid 2D extended aromatic structure of intralayer GO backbones can bear the shield effect of preventing the dendrites possibly generated at high current density from piercing. More importantly, such a shield effect can be significantly strengthened by layer-by-layer stacking of 2D molecular brushes. On the other hand, the 3D interconnected interlayer channels and the soft single lithium-ion conducting PSSLi side-chains on the surface of channels provide rapid lithium-ion transportation pathways and homogenize lithium-ion flux. As a result, LMBs with GO-g-PSSLi membrane possess long-term reversible lithium plating/striping (6 months) at high current density
Description:Date Revised 18.08.2022
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202108437