Video Pivoting Unsupervised Multi-Modal Machine Translation

The main challenge in the field of unsupervised machine translation (UMT) is to associate source-target sentences in the latent space. As people who speak different languages share biologically similar visual systems, various unsupervised multi-modal machine translation (UMMT) models have been propo...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 3 vom: 09. März, Seite 3918-3932
1. Verfasser: Li, Mingjie (VerfasserIn)
Weitere Verfasser: Huang, Po-Yao, Chang, Xiaojun, Hu, Junjie, Yang, Yi, Hauptmann, Alex
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM342011243
003 DE-627
005 20231226013106.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3181116  |2 doi 
028 5 2 |a pubmed24n1139.xml 
035 |a (DE-627)NLM342011243 
035 |a (NLM)35679386 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Mingjie  |e verfasserin  |4 aut 
245 1 0 |a Video Pivoting Unsupervised Multi-Modal Machine Translation 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.04.2023 
500 |a Date Revised 11.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The main challenge in the field of unsupervised machine translation (UMT) is to associate source-target sentences in the latent space. As people who speak different languages share biologically similar visual systems, various unsupervised multi-modal machine translation (UMMT) models have been proposed to improve the performances of UMT by employing visual contents in natural images to facilitate alignment. Commonly, relation information is the important semantic in a sentence. Compared with images, videos can better present the interactions between objects and the ways in which an object transforms over time. However, current state-of-the-art methods only explore scene-level or object-level information from images without explicitly modeling objects relation; thus, they are sensitive to spurious correlations, which poses a new challenge for UMMT models. In this paper, we employ a spatial-temporal graph obtained from videos to exploit object interactions in space and time for disambiguation purposes and to promote latent space alignment in UMMT. Our model employs multi-modal back-translation and features pseudo-visual pivoting, in which we learn a shared multilingual visual-semantic embedding space and incorporate visually pivoted captioning as additional weak supervision. Experimental results on the VATEX Translation 2020 and HowToWorld datasets validate the translation capabilities of our model on both sentence-level and word-level and generalizes well when videos are not available during the testing phase 
650 4 |a Journal Article 
700 1 |a Huang, Po-Yao  |e verfasserin  |4 aut 
700 1 |a Chang, Xiaojun  |e verfasserin  |4 aut 
700 1 |a Hu, Junjie  |e verfasserin  |4 aut 
700 1 |a Yang, Yi  |e verfasserin  |4 aut 
700 1 |a Hauptmann, Alex  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 3 vom: 09. März, Seite 3918-3932  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:3  |g day:09  |g month:03  |g pages:3918-3932 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3181116  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 3  |b 09  |c 03  |h 3918-3932