Amphiphilic Polymers for Color Dispersion : Toward Stable and Low-Viscosity Inkjet Ink

Amphiphilic random and block copolymers were synthesized as potential inkjet inks. This study evaluated the potential of these polymers for color dispersion by examining the following factors: surface tension, zeta potential, viscosity, and particle size. Acrylic acid and (ethoxyethoxy)ethyl acrylat...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 38(2022), 24 vom: 21. Juni, Seite 7618-7627
1. Verfasser: Ohtake, Toshihiro (VerfasserIn)
Weitere Verfasser: Ito, Hiroshi, Toyoda, Naoyuki
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Amphiphilic random and block copolymers were synthesized as potential inkjet inks. This study evaluated the potential of these polymers for color dispersion by examining the following factors: surface tension, zeta potential, viscosity, and particle size. Acrylic acid and (ethoxyethoxy)ethyl acrylate were used as the hydrophilic molecular units. Styrene, butyl acrylate, and phenoxyethyl acrylate were used as hydrophobic units. Color dispersions were prepared by using organic dye and these amphiphilic polymers. The color dispersions containing random copolymers exhibited low viscosity, which is preferable for jetting, but the dye particles tended to sediment after the thermal aging test. In contrast, those containing block copolymers showed high viscosity, which was unsuitable for jetting. However, they retained their initial dispersion state after the aging test. The advantages and disadvantages of each monomer arrangement (random or block) were demonstrated, providing a future outlook on the molecular design of polymer dispersants for color dispersions
Beschreibung:Date Revised 21.06.2022
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.2c01010