A simplified measure of nutritional empowerment : Using machine learning to abbreviate the Women's Empowerment in Nutrition Index (WENI)

© 2022 The Authors.

Bibliographische Detailangaben
Veröffentlicht in:World development. - 1999. - 154(2022) vom: 19. Juni, Seite 105860
1. Verfasser: Saha, Shree (VerfasserIn)
Weitere Verfasser: Narayanan, Sudha
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:World development
Schlagworte:Journal Article Empowerment Gender India LASSO Machine learning Nutrition South Asia
LEADER 01000caa a22002652 4500
001 NLM341868337
003 DE-627
005 20240826232319.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.worlddev.2022.105860  |2 doi 
028 5 2 |a pubmed24n1513.xml 
035 |a (DE-627)NLM341868337 
035 |a (NLM)35664956 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Saha, Shree  |e verfasserin  |4 aut 
245 1 2 |a A simplified measure of nutritional empowerment  |b Using machine learning to abbreviate the Women's Empowerment in Nutrition Index (WENI) 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 26.08.2024 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 The Authors. 
520 |a Measuring empowerment is both complicated and time consuming. A number of recent efforts have focused on how to better measure this complex multidimensional concept such that it is easy to implement. In this paper, we use machine learning techniques, specifically LASSO, using survey data from five Indian states to abbreviate a recently developed measure of nutritional empowerment, the Women's Empowerment in Nutrition Index (WENI) that has 33 distinct indicators. Our preferred Abridged Women's Empowerment in Nutrition Index (A-WENI) consists of 20 indicators. We validate the A-WENI via a field survey from a new context, the western Indian state of Maharashtra. We find that the 20-indicator A-WENI is both capable of reproducing well the empowerment scores and status generated by the 33-indicator WENI and predicting nutritional outcomes such as BMI and dietary diversity. Using this index, we find that in our Maharashtra sample, on average, only 35.9% of mothers of children under the age of 5 years are nutritionally empowered, whereas 77.2% of their spouses are nutritionally empowered. We also find that only 14.6% of the elderly women are nutritionally empowered. These estimates are broadly consistent with those based on the 33-indicator WENI. The A-WENI will reduce the time burden on respondents and can be incorporated in any general purpose survey conducted in rural contexts. Many of the indicators in A-WENI are often collected routinely in contemporary household surveys. Hence, capturing nutritional empowerment does not entail significant additional burden. Developing A-WENI can thus aid in an expansion of efforts to measure nutritional empowerment; this is key to understanding better the barriers and challenges women face and help identify ways in which women can improve their nutritional well-being in meaningful ways 
650 4 |a Journal Article 
650 4 |a Empowerment 
650 4 |a Gender 
650 4 |a India 
650 4 |a LASSO 
650 4 |a Machine learning 
650 4 |a Nutrition 
650 4 |a South Asia 
700 1 |a Narayanan, Sudha  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t World development  |d 1999  |g 154(2022) vom: 19. Juni, Seite 105860  |w (DE-627)NLM098143271  |x 0305-750X  |7 nnns 
773 1 8 |g volume:154  |g year:2022  |g day:19  |g month:06  |g pages:105860 
856 4 0 |u http://dx.doi.org/10.1016/j.worlddev.2022.105860  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 154  |j 2022  |b 19  |c 06  |h 105860