|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM341833665 |
003 |
DE-627 |
005 |
20231226012702.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1016/j.jplph.2022.153736
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1139.xml
|
035 |
|
|
|a (DE-627)NLM341833665
|
035 |
|
|
|a (NLM)35661472
|
035 |
|
|
|a (PII)S0176-1617(22)00122-5
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Ciacka, K
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Cold stratification-induced dormancy removal in apple (Malus domestica Borkh.) seeds is accompanied by an increased glutathione pool in embryonic axes
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 14.06.2022
|
500 |
|
|
|a Date Revised 14.06.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Copyright © 2022 Elsevier GmbH. All rights reserved.
|
520 |
|
|
|a A reduced form of glutathione (GSH) is an essential metabolite that participates in the control of reactive oxygen species (ROS) levels in cells. GSH plays a pivotal role in seed biology as a modulator of seed viability and germination. The GSH:GSSG ratio and half-cell reduction potential (EGSSG/2GSH) serve as indicators of the oxidative status in seeds. Apple (Malus domestica Borkh.) seeds are deeply dormant, and this state is removed by long-term cold stratification. The aim of our work was to examine the modification of GSH and GSSG content, GSH:GSSG ratio and EGSSG/2GSH in the embryonic axes isolated from apple seeds subjected to cold stratification for 7, 14, 21 and 40 d. Our data indicated that cold stratification increased the generation of free radicals in the embryonic axes, which correlated with an alteration in the expression of genes encoding Rboh, particularly RbohC. GSH and GSSG levels increased during prolonged cold stratification of apple seeds. This was accompanied by the modification of glutathione reductase and glutathione peroxidase-like activities, which did not match their transcript levels. The steady-state GSH:GSSG ratio and EGSSG/2GSH in the axes of embryos subjected to cold stratification indicated no impact of the dormancy removal treatment on apple seed viability. We suggest that the glutathione system is an important component of the redox network and is involved in the management of the seed transition from dormant to nondormant states
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Glutathione peroxidase
|
650 |
|
4 |
|a Glutathione reductase
|
650 |
|
4 |
|a ROS
|
650 |
|
4 |
|a S-nitrosoglutathione
|
650 |
|
4 |
|a Seed dormancy alleviation
|
650 |
|
7 |
|a Glutathione
|2 NLM
|
650 |
|
7 |
|a GAN16C9B8O
|2 NLM
|
650 |
|
7 |
|a Glutathione Disulfide
|2 NLM
|
650 |
|
7 |
|a ULW86O013H
|2 NLM
|
700 |
1 |
|
|a Tyminski, M
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gniazdowska, A
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Krasuska, U
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of plant physiology
|d 1979
|g 274(2022) vom: 01. Juli, Seite 153736
|w (DE-627)NLM098174622
|x 1618-1328
|7 nnns
|
773 |
1 |
8 |
|g volume:274
|g year:2022
|g day:01
|g month:07
|g pages:153736
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1016/j.jplph.2022.153736
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 274
|j 2022
|b 01
|c 07
|h 153736
|