Weakly-Supervised Video Object Grounding via Causal Intervention

We target at the task of weakly-supervised video object grounding (WSVOG), where only video-sentence annotations are available during model learning. It aims to localize objects described in the sentence to visual regions in the video, which is a fundamental capability needed in pattern analysis and...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 3 vom: 03. März, Seite 3933-3948
1. Verfasser: Wang, Wei (VerfasserIn)
Weitere Verfasser: Gao, Junyu, Xu, Changsheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM341797596
003 DE-627
005 20231226012611.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3180025  |2 doi 
028 5 2 |a pubmed24n1139.xml 
035 |a (DE-627)NLM341797596 
035 |a (NLM)35657841 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Wei  |e verfasserin  |4 aut 
245 1 0 |a Weakly-Supervised Video Object Grounding via Causal Intervention 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.04.2023 
500 |a Date Revised 07.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We target at the task of weakly-supervised video object grounding (WSVOG), where only video-sentence annotations are available during model learning. It aims to localize objects described in the sentence to visual regions in the video, which is a fundamental capability needed in pattern analysis and machine learning. Despite the recent progress, existing methods all suffer from the severe problem of spurious association, which will harm the grounding performance. In this paper, we start from the definition of WSVOG and pinpoint the spurious association from two aspects: (1) the association itself is not object-relevant but extremely ambiguous due to weak supervision; and (2) the association is unavoidably confounded by the observational bias when taking the statistics-based matching strategy in existing methods. With this in mind, we design a unified causal framework to learn the deconfounded object-relevant association for more accurate and robust video object grounding. Specifically, we learn the object-relevant association by causal intervention from the perspective of video data generation process. To overcome the problems of lacking fine-grained supervision in terms of intervention, we propose a novel spatial-temporal adversarial contrastive learning paradigm. To further remove the accompanying confounding effect within the object-relevant association, we pursue the true causality by conducting causal intervention via backdoor adjustment. Finally, the deconfounded object-relevant association is learned and optimized under a unified causal framework in an end-to-end manner. Extensive experiments on both IID and OOD testing sets of three benchmarks demonstrate its accurate and robust grounding performance against state-of-the-arts 
650 4 |a Journal Article 
700 1 |a Gao, Junyu  |e verfasserin  |4 aut 
700 1 |a Xu, Changsheng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 3 vom: 03. März, Seite 3933-3948  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:3  |g day:03  |g month:03  |g pages:3933-3948 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3180025  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 3  |b 03  |c 03  |h 3933-3948