Soil moisture regulates warming responses of autumn photosynthetic transition dates in subtropical forests

© 2022 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 28(2022), 16 vom: 27. Aug., Seite 4935-4946
1. Verfasser: Fu, Yongshuo H (VerfasserIn)
Weitere Verfasser: Li, Xinxi, Chen, Shouzhi, Wu, Zhaofei, Su, Jianrong, Li, Xing, Li, Shuaifeng, Zhang, Jing, Tang, Jing, Xiao, Jingfeng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article autumn phenology chlorophyll fluorescence climate change machine learning soil moisture subtropical forests Soil Carbon 7440-44-0
LEADER 01000caa a22002652c 4500
001 NLM341646121
003 DE-627
005 20250303101701.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.16227  |2 doi 
028 5 2 |a pubmed25n1138.xml 
035 |a (DE-627)NLM341646121 
035 |a (NLM)35642473 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Fu, Yongshuo H  |e verfasserin  |4 aut 
245 1 0 |a Soil moisture regulates warming responses of autumn photosynthetic transition dates in subtropical forests 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 15.07.2022 
500 |a Date Revised 17.09.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2022 John Wiley & Sons Ltd. 
520 |a Autumn phenology plays a key role in regulating the terrestrial carbon and water balance and their feedbacks to the climate. However, the mechanisms underlying autumn phenology are still poorly understood, especially in subtropical forests. In this study, we extracted the autumn photosynthetic transition dates (APTD) in subtropical China over the period 2003-2017 based on a global, fine-resolution solar-induced chlorophyll fluorescence (SIF) dataset (GOSIF) using four fitting methods, and then explored the temporal-spatial variations of APTD and its underlying mechanisms using partial correlation analysis and machine learning methods. We further predicted the APTD shifts under future climate warming conditions by applying process-based and machine learning-based models. We found that the APTD was significantly delayed, with an average rate of 7.7 days per decade, in subtropical China during 2003-2017. Both partial correlation analysis and machine learning methods revealed that soil moisture was the primary driver responsible for the APTD changes in southern subtropical monsoon evergreen forest (SEF) and middle subtropical evergreen forest (MEF), whereas solar radiation controlled the APTD variations in the northern evergreen-broadleaf deciduous mixed forest (NMF). Combining the effects of temperature, soil moisture and radiation, we found a significantly delayed trend in APTD during the 2030-2100 period, but the trend amplitude (0.8 days per decade) was much weaker than that over 2003-2017. In addition, we found that machine learning methods outperformed process-based models in projecting APTD. Our findings generate from different methods highlight that soil moisture is one of the key players in determining autumn photosynthetic phenological processes in subtropical forests. To comprehensively understand autumn phenological processes, in-situ manipulative experiments are urgently needed to quantify the contributions of different environmental and physiological factors in regulating plants' response to ongoing climate change 
650 4 |a Journal Article 
650 4 |a autumn phenology 
650 4 |a chlorophyll fluorescence 
650 4 |a climate change 
650 4 |a machine learning 
650 4 |a soil moisture 
650 4 |a subtropical forests 
650 7 |a Soil  |2 NLM 
650 7 |a Carbon  |2 NLM 
650 7 |a 7440-44-0  |2 NLM 
700 1 |a Li, Xinxi  |e verfasserin  |4 aut 
700 1 |a Chen, Shouzhi  |e verfasserin  |4 aut 
700 1 |a Wu, Zhaofei  |e verfasserin  |4 aut 
700 1 |a Su, Jianrong  |e verfasserin  |4 aut 
700 1 |a Li, Xing  |e verfasserin  |4 aut 
700 1 |a Li, Shuaifeng  |e verfasserin  |4 aut 
700 1 |a Zhang, Jing  |e verfasserin  |4 aut 
700 1 |a Tang, Jing  |e verfasserin  |4 aut 
700 1 |a Xiao, Jingfeng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 28(2022), 16 vom: 27. Aug., Seite 4935-4946  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnas 
773 1 8 |g volume:28  |g year:2022  |g number:16  |g day:27  |g month:08  |g pages:4935-4946 
856 4 0 |u http://dx.doi.org/10.1111/gcb.16227  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2022  |e 16  |b 27  |c 08  |h 4935-4946