Radar-Based Shape and Reflectivity Reconstruction Using Active Surfaces and the Level Set Method

We investigate a multiview shape reconstruction problem based on an active surface model whose geometric evolution is driven by radar measurements acquired at sparse locations. Building on our previous work in the context of variational methods for the reconstruction of a scene conceptualized as the...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 3 vom: 01. März, Seite 3617-3631
1. Verfasser: Bignardi, Samuel (VerfasserIn)
Weitere Verfasser: Sandhu, Romeil, Yezzi, Anthony
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM341580732
003 DE-627
005 20231226012117.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3178969  |2 doi 
028 5 2 |a pubmed24n1138.xml 
035 |a (DE-627)NLM341580732 
035 |a (NLM)35635811 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bignardi, Samuel  |e verfasserin  |4 aut 
245 1 0 |a Radar-Based Shape and Reflectivity Reconstruction Using Active Surfaces and the Level Set Method 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.04.2023 
500 |a Date Revised 11.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We investigate a multiview shape reconstruction problem based on an active surface model whose geometric evolution is driven by radar measurements acquired at sparse locations. Building on our previous work in the context of variational methods for the reconstruction of a scene conceptualized as the graph of a function, we generalize this inversion approach for a general geometry, now described by an active surface, strongly motivated by prior variational computer vision approaches to multiview stereo reconstruction from camera images. While conceptually similar, use of radar echoes within a variational scheme to drive the active surface evolution requires significant changes in regularization strategies compared to prior image based methodologies for the active surface evolution to work effectively. We describe all of these aspects and how we addressed them. While our long term objective is to develop a framework capable of fusing radar as well as other image based information, in which the active surface becomes an explicit shared reference for data fusion. In this paper, we explore the reconstruction using radar as a single modality, demonstrating that the presented approach can provide reconstructions of quality comparable to those from image based methods showing great potential for further development toward data fusion 
650 4 |a Journal Article 
700 1 |a Sandhu, Romeil  |e verfasserin  |4 aut 
700 1 |a Yezzi, Anthony  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 3 vom: 01. März, Seite 3617-3631  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:3  |g day:01  |g month:03  |g pages:3617-3631 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3178969  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 3  |b 01  |c 03  |h 3617-3631