Equivalent Classification Mapping for Weakly Supervised Temporal Action Localization

Weakly supervised temporal action localization is a newly emerging yet widely studied topic in recent years. The existing methods can be categorized into two localization-by-classification pipelines, i.e., the pre-classification pipeline and the post-classification pipeline. The pre-classification p...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 3 vom: 01. März, Seite 3019-3031
Auteur principal: Zhao, Tao (Auteur)
Autres auteurs: Han, Junwei, Yang, Le, Zhang, Dingwen
Format: Article en ligne
Langue:English
Publié: 2023
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM341580724
003 DE-627
005 20250303100846.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3178957  |2 doi 
028 5 2 |a pubmed25n1138.xml 
035 |a (DE-627)NLM341580724 
035 |a (NLM)35635810 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhao, Tao  |e verfasserin  |4 aut 
245 1 0 |a Equivalent Classification Mapping for Weakly Supervised Temporal Action Localization 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.04.2023 
500 |a Date Revised 07.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Weakly supervised temporal action localization is a newly emerging yet widely studied topic in recent years. The existing methods can be categorized into two localization-by-classification pipelines, i.e., the pre-classification pipeline and the post-classification pipeline. The pre-classification pipeline first performs classification on each video snippet, and then, aggregates the snippet-level classification scores to obtain the video-level classification score. In contrast, the post-classification pipeline aggregates the snippet-level features first and then predicts the video-level classification score based on the aggregated feature. Although the classifiers in these two pipelines are used in different ways, the role they play is exactly the same-to classify the given features to identify the corresponding action categories. To this end, an ideal classifier can make both pipelines work. This inspires us to simultaneously learn these two pipelines in a unified framework to obtain an effective classifier. Specifically, in the proposed learning framework, we implement two parallel network streams to model the two localization-by-classification pipelines simultaneously and make the two network streams share the same classifier. This achieves the novel Equivalent Classification Mapping (ECM) mechanism. Moreover, we discover that an ideal classifier may possess two characteristics: 1) the frame-level classification scores obtained from the pre-classification stream and the feature aggregation weights in the post-classification stream should be consistent; and 2) the classification results of these two streams should be identical. Based on these two characteristics, we further introduce a weight-transition module and an equivalent training strategy into the proposed learning framework, which assists to thoroughly mine the equivalence mechanism. Comprehensive experiments are conducted on three benchmarks and ECM achieves accurate action localization results 
650 4 |a Journal Article 
700 1 |a Han, Junwei  |e verfasserin  |4 aut 
700 1 |a Yang, Le  |e verfasserin  |4 aut 
700 1 |a Zhang, Dingwen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 3 vom: 01. März, Seite 3019-3031  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:45  |g year:2023  |g number:3  |g day:01  |g month:03  |g pages:3019-3031 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3178957  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 3  |b 01  |c 03  |h 3019-3031