Long-Lasting Self-Healing Surface Dewettability through the Rapid Regeneration of Surface Morphologies
The development of self-healing systems for artificial superhydrophobic materials/surfaces based on the reconstruction of surface topologies rather than chemical makeup has been much less established. In this article, we report for the first time a simple and straightforward method for self-repairin...
Publié dans: | Langmuir : the ACS journal of surfaces and colloids. - 1985. - 38(2022), 24 vom: 21. Juni, Seite 7611-7617 |
---|---|
Auteur principal: | |
Autres auteurs: | , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2022
|
Accès à la collection: | Langmuir : the ACS journal of surfaces and colloids |
Sujets: | Journal Article |
Résumé: | The development of self-healing systems for artificial superhydrophobic materials/surfaces based on the reconstruction of surface topologies rather than chemical makeup has been much less established. In this article, we report for the first time a simple and straightforward method for self-repairing surface dewettability over a long period of time by rapidly regenerating surface microstructures. We selected paraffin wax as a matrix for methyltrichlorosilane (MTCS) having strong reactivity with moisture/water and simply mixed them. When the as-prepared MTCS-loaded paraffin wax surfaces were exposed to air for a few hours, they spontaneously became highly hydrophobic with water contact angles of about 150° due to the formation of disordered surface microstructures. The use of paraffin wax with a few angstrom-scale space as a matrix was found to be more effective than the use of poly(dimethylsiloxane) with nanometer-size porosity in preventing both evaporation and degradation of MTCS's chemical reactivity for a long period. Therefore, for about 1 month, even after the surface microstructures were completely destroyed, surface dewettability could be self-repaired by rapidly regenerating surface morphologies. In addition, chemical damage by UV/ozone exposure could also be repeatably self-healed by the reconstruction of surface chemical makeup. We thus expect that this simple approach could provide future insights to impart the self-healing ability of manmade superhydrophobic materials/surfaces against chemical and physical damages |
---|---|
Description: | Date Revised 21.06.2022 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.2c00956 |