Exact analytical loop closure in proteins using polynomial equations

Copyright © 1999 John Wiley & Sons, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 20(1999), 8 vom: 17. Juni, Seite 819-844
1. Verfasser: Wedemeyer, William J (VerfasserIn)
Weitere Verfasser: Scheraga, Harold A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 1999
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article loop closure resultants rigid geometry ring closure spherical geometry
LEADER 01000naa a22002652 4500
001 NLM341417920
003 DE-627
005 20231226011733.0
007 cr uuu---uuuuu
008 231226s1999 xx |||||o 00| ||eng c
024 7 |a 10.1002/(SICI)1096-987X(199906)20:8<819::AID-JCC8>3.0.CO;2-Y  |2 doi 
028 5 2 |a pubmed24n1138.xml 
035 |a (DE-627)NLM341417920 
035 |a (NLM)35619465 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wedemeyer, William J  |e verfasserin  |4 aut 
245 1 0 |a Exact analytical loop closure in proteins using polynomial equations 
264 1 |c 1999 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.05.2022 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Copyright © 1999 John Wiley & Sons, Inc. 
520 |a Loop closure in proteins has been studied actively for over 25 years. Using spherical geometry and polynomial equations, several loop-closure problems in proteins are solved exactly by reducing them to the determination of the real roots of a polynomial. Loops of seven, eight, and nine atoms are treated explicitly, including the tripeptide and disulfide-bonded loop-closure problems. The number of valid loop closures can be evaluated by the method of Sturm chains, which counts the number of real roots of a polynomial. Longer loops can be treated by three methods: by sampling enough dihedral angles to reduce the problem to a soluble loop-closure problem; by applying the loop-closure algorithm hierarchically; or by decimating the chain into independently moving rigid elements that can be reconnected using loop-closure algorithms. Applications of the methods to docking, homology modeling and NMR problems are discussed. ©1999 John Wiley & Sons, Inc. J Comput Chem 20: 819-844, 1999 
650 4 |a Journal Article 
650 4 |a loop closure 
650 4 |a resultants 
650 4 |a rigid geometry 
650 4 |a ring closure 
650 4 |a spherical geometry 
700 1 |a Scheraga, Harold A  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 20(1999), 8 vom: 17. Juni, Seite 819-844  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:20  |g year:1999  |g number:8  |g day:17  |g month:06  |g pages:819-844 
856 4 0 |u http://dx.doi.org/10.1002/(SICI)1096-987X(199906)20:8<819::AID-JCC8>3.0.CO;2-Y  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 20  |j 1999  |e 8  |b 17  |c 06  |h 819-844