Low Dimensional Trajectory Hypothesis is True : DNNs Can Be Trained in Tiny Subspaces

Deep neural networks (DNNs) usually contain massive parameters, but there is redundancy such that it is guessed that they could be trained in low-dimensional subspaces. In this paper, we propose a Dynamic Linear Dimensionality Reduction (DLDR) based on the low-dimensional properties of the training...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 3 vom: 26. März, Seite 3411-3420
1. Verfasser: Li, Tao (VerfasserIn)
Weitere Verfasser: Tan, Lei, Huang, Zhehao, Tao, Qinghua, Liu, Yipeng, Huang, Xiaolin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM341395501
003 DE-627
005 20231226011658.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3178101  |2 doi 
028 5 2 |a pubmed24n1137.xml 
035 |a (DE-627)NLM341395501 
035 |a (NLM)35617189 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Tao  |e verfasserin  |4 aut 
245 1 0 |a Low Dimensional Trajectory Hypothesis is True  |b DNNs Can Be Trained in Tiny Subspaces 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.04.2023 
500 |a Date Revised 07.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Deep neural networks (DNNs) usually contain massive parameters, but there is redundancy such that it is guessed that they could be trained in low-dimensional subspaces. In this paper, we propose a Dynamic Linear Dimensionality Reduction (DLDR) based on the low-dimensional properties of the training trajectory. The reduction method is efficient, supported by comprehensive experiments: optimizing DNNs in 40-dimensional spaces can achieve comparable performance as regular training over thousands or even millions of parameters. Since there are only a few variables to optimize, we develop an efficient quasi-Newton-based algorithm, obtain robustness to label noise, and improve the performance of well-trained models, which are three follow-up experiments that can show the advantages of finding such low-dimensional subspaces. The code is released (Pytorch: https://github.com/nblt/DLDR and Mindspore: https://gitee.com/mindspore/docs/tree/r1.6/docs/sample_code/dimension_reduce_training) 
650 4 |a Journal Article 
700 1 |a Tan, Lei  |e verfasserin  |4 aut 
700 1 |a Huang, Zhehao  |e verfasserin  |4 aut 
700 1 |a Tao, Qinghua  |e verfasserin  |4 aut 
700 1 |a Liu, Yipeng  |e verfasserin  |4 aut 
700 1 |a Huang, Xiaolin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 3 vom: 26. März, Seite 3411-3420  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:3  |g day:26  |g month:03  |g pages:3411-3420 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3178101  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 3  |b 26  |c 03  |h 3411-3420