Hypergraph Collaborative Network on Vertices and Hyperedges

In many practical datasets, such as co-citation and co-authorship, relationships across the samples are more complex than pair-wise. Hypergraphs provide a flexible and natural representation for such complex correlations and thus obtain increasing attention in the machine learning and data mining co...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 3 vom: 26. März, Seite 3245-3258
1. Verfasser: Wu, Hanrui (VerfasserIn)
Weitere Verfasser: Yan, Yuguang, Ng, Michael Kwok-Po
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM341395498
003 DE-627
005 20250303094606.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3178156  |2 doi 
028 5 2 |a pubmed25n1137.xml 
035 |a (DE-627)NLM341395498 
035 |a (NLM)35617188 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wu, Hanrui  |e verfasserin  |4 aut 
245 1 0 |a Hypergraph Collaborative Network on Vertices and Hyperedges 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.04.2023 
500 |a Date Revised 07.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In many practical datasets, such as co-citation and co-authorship, relationships across the samples are more complex than pair-wise. Hypergraphs provide a flexible and natural representation for such complex correlations and thus obtain increasing attention in the machine learning and data mining communities. Existing deep learning-based hypergraph approaches seek to learn the latent vertex representations based on either vertices or hyperedges from previous layers and focus on reducing the cross-entropy error over labeled vertices to obtain a classifier. In this paper, we propose a novel model called Hypergraph Collaborative Network (HCoN), which takes the information from both previous vertices and hyperedges into consideration to achieve informative latent representations and further introduces the hypergraph reconstruction error as a regularizer to learn an effective classifier. We evaluate the proposed method on two cases, i.e., semi-supervised vertex and hyperedge classifications. We carry out the experiments on several benchmark datasets and compare our method with several state-of-the-art approaches. Experimental results demonstrate that the performance of the proposed method is better than that of the baseline methods 
650 4 |a Journal Article 
700 1 |a Yan, Yuguang  |e verfasserin  |4 aut 
700 1 |a Ng, Michael Kwok-Po  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 3 vom: 26. März, Seite 3245-3258  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:45  |g year:2023  |g number:3  |g day:26  |g month:03  |g pages:3245-3258 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3178156  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 3  |b 26  |c 03  |h 3245-3258