Full-scale transition from denitrification to partial denitrification-anammox (PdNA) in deep-bed filters : Operational strategies for and benefits of PdNA implementation

© 2022 Water Environment Federation.

Bibliographische Detailangaben
Veröffentlicht in:Water environment research : a research publication of the Water Environment Federation. - 1998. - 94(2022), 5 vom: 01. Mai, Seite e10727
1. Verfasser: Fofana, Rahil (VerfasserIn)
Weitere Verfasser: Parsons, Michael, Long, Chenghua, Chandran, Kartik, Jones, Kimberly, Klaus, Stephanie, Trovato, Bob, Wilson, Chris, De Clippeleir, Haydee, Bott, Charles
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Water environment research : a research publication of the Water Environment Federation
Schlagworte:Case Reports deammonification mainstream anammox methanol partial denitrification process control Ammonium Compounds Nitrates Nitrites Sewage mehr... Waste Water Nitrogen N762921K75 Methanol Y4S76JWI15
LEADER 01000naa a22002652 4500
001 NLM341387274
003 DE-627
005 20231226011646.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1002/wer.10727  |2 doi 
028 5 2 |a pubmed24n1137.xml 
035 |a (DE-627)NLM341387274 
035 |a (NLM)35616350 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Fofana, Rahil  |e verfasserin  |4 aut 
245 1 0 |a Full-scale transition from denitrification to partial denitrification-anammox (PdNA) in deep-bed filters  |b Operational strategies for and benefits of PdNA implementation 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.05.2022 
500 |a Date Revised 07.12.2022 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a © 2022 Water Environment Federation. 
520 |a This study shows for the first time more than 2 years of operation of a mainstream anammox application at full-scale under temperate climate. This implementation of partial denitrification-anammox (PdNA) in deep bed filters at the HRSD York River treatment plant was demonstrated to achieve the benefits of shortcut nitrogen removal without nitrite oxidizing bacteria (NOB) out-selection. The transition from denitrification to PdNA filters required bleeding ammonium to the filters using an optimized ammonium versus NOx (AvN) control in the upstream aeration tanks and maintaining a nitrate residual in the filter effluent through feedforward/feedback control. The latter actions led to savings of 85% in methanol, 100% in alkalinity, and 35% in capacity enhancement. Up to 6 mg NH4 + -N/L with an average of 2.2 ± 0.98 mg NH4 + -N/L was removed through the anammox pathway, which accounted for about 15% of the overall plant nitrogen removal. Anammox enrichment was confirmed by activity testing and molecular analysis. The large excess of AnAOB capacity present in the filters (5-10 times more than normal operation) resulted in stable and reliable operation through winter conditions and showed potential for further intensification. PRACTITIONER POINTS: For the first time, long-term mainstream anammox was established full-scale through PdNA implementation in deep-bed filters. PdNA implementation required upstream aeration control optimization to provide a blend of ammonium and nitrate to the filters. Efficient anammox enrichment and retention resulted in reliable PdNA performance under different seasonal and influent conditions. PdNA implementation resulted in significant methanol and alkalinity savings and upstream capacity enhancement as ammonia removal depended less on aerobic nitrification. In the event of NOB out-selection and presence of nitrite, carbon savings in PdNA polishing filters can be enhanced via partial nitritation-anammox 
650 4 |a Case Reports 
650 4 |a deammonification 
650 4 |a mainstream anammox 
650 4 |a methanol 
650 4 |a partial denitrification 
650 4 |a process control 
650 7 |a Ammonium Compounds  |2 NLM 
650 7 |a Nitrates  |2 NLM 
650 7 |a Nitrites  |2 NLM 
650 7 |a Sewage  |2 NLM 
650 7 |a Waste Water  |2 NLM 
650 7 |a Nitrogen  |2 NLM 
650 7 |a N762921K75  |2 NLM 
650 7 |a Methanol  |2 NLM 
650 7 |a Y4S76JWI15  |2 NLM 
700 1 |a Parsons, Michael  |e verfasserin  |4 aut 
700 1 |a Long, Chenghua  |e verfasserin  |4 aut 
700 1 |a Chandran, Kartik  |e verfasserin  |4 aut 
700 1 |a Jones, Kimberly  |e verfasserin  |4 aut 
700 1 |a Klaus, Stephanie  |e verfasserin  |4 aut 
700 1 |a Trovato, Bob  |e verfasserin  |4 aut 
700 1 |a Wilson, Chris  |e verfasserin  |4 aut 
700 1 |a De Clippeleir, Haydee  |e verfasserin  |4 aut 
700 1 |a Bott, Charles  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Water environment research : a research publication of the Water Environment Federation  |d 1998  |g 94(2022), 5 vom: 01. Mai, Seite e10727  |w (DE-627)NLM098214292  |x 1554-7531  |7 nnns 
773 1 8 |g volume:94  |g year:2022  |g number:5  |g day:01  |g month:05  |g pages:e10727 
856 4 0 |u http://dx.doi.org/10.1002/wer.10727  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 94  |j 2022  |e 5  |b 01  |c 05  |h e10727