Impoundment increases methane emissions in Phragmites-invaded coastal wetlands

© 2022 John Wiley & Sons Ltd. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 28(2022), 15 vom: 26. Aug., Seite 4539-4557
1. Verfasser: Sanders-DeMott, Rebecca (VerfasserIn)
Weitere Verfasser: Eagle, Meagan J, Kroeger, Kevin D, Wang, Faming, Brooks, Thomas W, O'Keefe Suttles, Jennifer A, Nick, Sydney K, Mann, Adrian G, Tang, Jianwu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article phragmites blue carbon coastal wetland dike eddy covariance impoundment methane net ecosystem exchange restoration mehr... static chambers Carbon Dioxide 142M471B3J Methane OP0UW79H66
LEADER 01000naa a22002652 4500
001 NLM341384399
003 DE-627
005 20231226011642.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.16217  |2 doi 
028 5 2 |a pubmed24n1137.xml 
035 |a (DE-627)NLM341384399 
035 |a (NLM)35616054 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sanders-DeMott, Rebecca  |e verfasserin  |4 aut 
245 1 0 |a Impoundment increases methane emissions in Phragmites-invaded coastal wetlands 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 04.07.2022 
500 |a Date Revised 17.09.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2022 John Wiley & Sons Ltd. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA. 
520 |a Saline tidal wetlands are important sites of carbon sequestration and produce negligible methane (CH4 ) emissions due to regular inundation with sulfate-rich seawater. Yet, widespread management of coastal hydrology has restricted tidal exchange in vast areas of coastal wetlands. These ecosystems often undergo impoundment and freshening, which in turn cause vegetation shifts like invasion by Phragmites, that affect ecosystem carbon balance. Understanding controls and scaling of carbon exchange in these understudied ecosystems is critical for informing climate consequences of blue carbon restoration and/or management interventions. Here, we (1) examine how carbon fluxes vary across a salinity gradient (4-25 psu) in impounded and natural, tidally unrestricted Phragmites wetlands using static chambers and (2) probe drivers of carbon fluxes within an impounded coastal wetland using eddy covariance at the Herring River in Wellfleet, MA, United States. Freshening across the salinity gradient led to a 50-fold increase in CH4 emissions, but effects on carbon dioxide (CO2 ) were less pronounced with uptake generally enhanced in the fresher, impounded sites. The impounded wetland experienced little variation in water-table depth or salinity during the growing season and was a strong CO2 sink of -352 g CO2 -C m-2  year-1 offset by CH4 emission of 11.4 g CH4 -C m-2  year-1 . Growing season CH4 flux was driven primarily by temperature. Methane flux exhibited a diurnal cycle with a night-time minimum that was not reflected in opaque chamber measurements. Therefore, we suggest accounting for the diurnal cycle of CH4 in Phragmites, for example by applying a scaling factor developed here of ~0.6 to mid-day chamber measurements. Taken together, these results suggest that although freshened, impounded wetlands can be strong carbon sinks, enhanced CH4 emission with freshening reduces net radiative balance. Restoration of tidal flow to impounded ecosystems could limit CH4 production and enhance their climate regulating benefits 
650 4 |a Journal Article 
650 4 |a phragmites 
650 4 |a blue carbon 
650 4 |a coastal wetland 
650 4 |a dike 
650 4 |a eddy covariance 
650 4 |a impoundment 
650 4 |a methane 
650 4 |a net ecosystem exchange 
650 4 |a restoration 
650 4 |a static chambers 
650 7 |a Carbon Dioxide  |2 NLM 
650 7 |a 142M471B3J  |2 NLM 
650 7 |a Methane  |2 NLM 
650 7 |a OP0UW79H66  |2 NLM 
700 1 |a Eagle, Meagan J  |e verfasserin  |4 aut 
700 1 |a Kroeger, Kevin D  |e verfasserin  |4 aut 
700 1 |a Wang, Faming  |e verfasserin  |4 aut 
700 1 |a Brooks, Thomas W  |e verfasserin  |4 aut 
700 1 |a O'Keefe Suttles, Jennifer A  |e verfasserin  |4 aut 
700 1 |a Nick, Sydney K  |e verfasserin  |4 aut 
700 1 |a Mann, Adrian G  |e verfasserin  |4 aut 
700 1 |a Tang, Jianwu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 28(2022), 15 vom: 26. Aug., Seite 4539-4557  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:28  |g year:2022  |g number:15  |g day:26  |g month:08  |g pages:4539-4557 
856 4 0 |u http://dx.doi.org/10.1111/gcb.16217  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2022  |e 15  |b 26  |c 08  |h 4539-4557