|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM341382906 |
003 |
DE-627 |
005 |
20231226011640.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1080/09593330.2022.2082322
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1137.xml
|
035 |
|
|
|a (DE-627)NLM341382906
|
035 |
|
|
|a (NLM)35615906
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Sun, Pingping
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Isolation and characterisation of Fe(II)-oxidising bacteria and their application in the removal of arsenic in an aqueous solution
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 23.10.2023
|
500 |
|
|
|a Date Revised 23.10.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Arsenic (As) is a toxic metalloid disseminated in water, soil, and air. Arsenic contamination is currently a major public health concern. This study investigated arsenic removal by Fe(II)-oxidising bacteria in an aqueous solution. A bacterial strain, Z1, isolated from concentrated sludge, was identified as Sphaerotilus natans based on microscopic morphology, culture characteristics, and 16s rRNA gene sequences. After arsenic-resistant acclimation, Sphaerotilus natans Z1 successfully survived and propagated in high arsenic conditions (100 mg·L-1 As(V) or As(III)). To a certain extent, the isolated strain could decrease the concentration of As(III)/As(V) by biosorption under organic substance supply. Partial As(V) could be reduced to As(III) due to cytoplasmic arsenic reduction of bacteria. In addition, ferrihydrite, one of the iron oxides, was formed by the mediation of Sphaerotilus natans in the Winogradsky medium. Most of As(III)/As(V) could be effectively removed by sorbing onto the resultant ferrihydrite mineral. Thus, iron oxide minerals facilitated by Sphaerotilus natans may be an alternative remediation strategy for scavenging arsenic in the water environment
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Arsenic removal
|
650 |
|
4 |
|a Sphaerotilus natans
|
650 |
|
4 |
|a arsenic-resistant acclimation
|
650 |
|
4 |
|a biosorption
|
650 |
|
4 |
|a ferrihydrite
|
650 |
|
7 |
|a ferric oxyhydroxide
|2 NLM
|
650 |
|
7 |
|a 87PZU03K0K
|2 NLM
|
650 |
|
7 |
|a Arsenic
|2 NLM
|
650 |
|
7 |
|a N712M78A8G
|2 NLM
|
650 |
|
7 |
|a RNA, Ribosomal, 16S
|2 NLM
|
650 |
|
7 |
|a Ferric Compounds
|2 NLM
|
650 |
|
7 |
|a ferric oxide
|2 NLM
|
650 |
|
7 |
|a 1K09F3G675
|2 NLM
|
650 |
|
7 |
|a Minerals
|2 NLM
|
650 |
|
7 |
|a Water
|2 NLM
|
650 |
|
7 |
|a 059QF0KO0R
|2 NLM
|
650 |
|
7 |
|a Ferrous Compounds
|2 NLM
|
700 |
1 |
|
|a Wang, Xiaomeng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liang, Jianru
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhou, Lixiang
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Environmental technology
|d 1993
|g 44(2023), 27 vom: 06. Nov., Seite 4136-4146
|w (DE-627)NLM098202545
|x 1479-487X
|7 nnns
|
773 |
1 |
8 |
|g volume:44
|g year:2023
|g number:27
|g day:06
|g month:11
|g pages:4136-4146
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1080/09593330.2022.2082322
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 44
|j 2023
|e 27
|b 06
|c 11
|h 4136-4146
|