Fast Multiview Clustering With Spectral Embedding

Spectral clustering has been a hot topic in unsupervised learning owing to its remarkable clustering effectiveness and well-defined framework. Despite this, due to its high computation complexity, it is unable of handling large-scale or high-dimensional data, particularly multi-view large-scale data...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 24., Seite 3884-3895
1. Verfasser: Yang, Ben (VerfasserIn)
Weitere Verfasser: Zhang, Xuetao, Nie, Feiping, Wang, Fei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM341315508
003 DE-627
005 20231226011508.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3176223  |2 doi 
028 5 2 |a pubmed24n1137.xml 
035 |a (DE-627)NLM341315508 
035 |a (NLM)35609096 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Ben  |e verfasserin  |4 aut 
245 1 0 |a Fast Multiview Clustering With Spectral Embedding 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 10.06.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Spectral clustering has been a hot topic in unsupervised learning owing to its remarkable clustering effectiveness and well-defined framework. Despite this, due to its high computation complexity, it is unable of handling large-scale or high-dimensional data, particularly multi-view large-scale data. To address this issue, in this paper, we propose a fast multi-view clustering algorithm with spectral embedding (FMCSE), which speeds up both the spectral embedding and spectral analysis stages of multi-view spectral clustering. Furthermore, unlike conventional spectral clustering, FMCSE can acquire all sample categories directly after optimization without extra k-means, which can significantly enhance efficiency. Moreover, we also provide a fast optimization strategy for solving the FMCSE model, which divides the optimization problem into three decoupled small-scale sub-problems that can be solved in a few iteration steps. Finally, extensive experiments on a variety of real-world datasets (including large-scale and high-dimensional datasets) show that, when compared to other state-of-the-art fast multi-view clustering baselines, FMCSE can maintain comparable or even better clustering effectiveness while significantly improving clustering efficiency 
650 4 |a Journal Article 
700 1 |a Zhang, Xuetao  |e verfasserin  |4 aut 
700 1 |a Nie, Feiping  |e verfasserin  |4 aut 
700 1 |a Wang, Fei  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 24., Seite 3884-3895  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:24  |g pages:3884-3895 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3176223  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 24  |h 3884-3895