Fabrication of Bragg Mirrors by Multilayer Inkjet Printing

© 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 33 vom: 15. Aug., Seite e2201348
1. Verfasser: Zhang, Qiaoshuang (VerfasserIn)
Weitere Verfasser: Jin, Qihao, Mertens, Adrian, Rainer, Christian, Huber, Robert, Fessler, Jan, Hernandez-Sosa, Gerardo, Lemmer, Uli
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article 1D photonic crystals Bragg mirrors dielectric mirrors dielectric stacks inkjet printing
Beschreibung
Zusammenfassung:© 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.
Bragg mirrors are widely applied in optical and photonic devices due to their capability of light management. However, the fabrication of Bragg mirrors is mainly accomplished by physical and chemical vapor deposition processes, which are costly and do not allow for lateral patterning. Here, the fabrication of Bragg mirrors by fully inkjet printing is reported. The photonic bandgap of Bragg mirrors is tailored by adjusting the number of bilayers in the stack and the layer thickness via simply varying printing parameters. An ultrahigh reflectance of 99% is achieved with the devices consisting of ten bilayers only, and the central wavelength of Bragg mirrors is tuned from visible into near-infrared wavelength range. Inkjet printing allows for fabricating Bragg mirrors on various substrates (e.g., glass and foils), in different sizes and variable lateral patterns. The printed Bragg mirrors not only exhibit a high reflection at designed wavelengths but also show an outstanding homogeneity in color over a large area. The approach thus enables additive manufacturing for various applications ranging from microscale photonic elements to enhanced functionality and aesthetics in large-area displays and solar technologies
Beschreibung:Date Revised 18.08.2022
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202201348