Multichannel Superposition of Grafted Perfect Vortex Beams

© 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 30 vom: 15. Juli, Seite e2203044
1. Verfasser: Ahmed, Hammad (VerfasserIn)
Weitere Verfasser: Intaravanne, Yuttana, Ming, Yang, Ansari, Muhammad Afnan, Buller, Gerald S, Zentgraf, Thomas, Chen, Xianzhong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article grafted vortex beams multiple channels optical metasurfaces optical perfect vortex beams superposition of grafted vortex beams
Beschreibung
Zusammenfassung:© 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.
Inspired by plant grafting, grafted vortex beams can be formed through grafting two or more helical phase profiles of optical vortex beams. Recently, grafted perfect vortex beams (GPVBs) have attracted much attention due to their unique optical properties and potential applications. However, the current method to generate and manipulate GPVBs requires a complex and bulky optical system, hindering further investigation and limiting its practical applications. Here, a compact metasurface approach for generating and manipulating GPVBs in multiple channels is proposed and demonstrated, which eliminates the need for such a complex optical setup. A single metasurface is utilized to realize various superpositions of GPVBs with different combinations of topological charges in four channels, leading to asymmetric singularity distributions. The positions of singularities in the superimposed beam can be further modulated by introducing an initial phase difference in the metasurface design. The work demonstrates a compact metasurface platform that performs a sophisticated optical task that is very challenging with conventional optics, opening opportunities for the investigation and applications of GPVBs in a wide range of emerging application areas, such as singular optics and quantum science
Beschreibung:Date Revised 27.07.2022
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202203044